
national**grid**

Groundwater Sampling, NAPL
Monitoring/Recovery and Groundwater
Treatment Performance Report for the
First Quarter of 2013 (January - March 2013)
for the Hempstead Intersection Street
Former Manufactured Gas Plant Site
Villages of Hempstead & Garden City
Nassau County, New York

Prepared for:

National Grid 175 East Old Country Road Hicksville, New York 11801

Prepared by:

URS Corporation - New York 77 Goodell Street Buffalo, New York 14203

September 2013

GROUNDWATER SAMPLING, NAPL MONITORING/RECOVERY, AND GROUNDWATER TREATMENT PERFORMANCE REPORT FOR THE FIRST QUARTER OF 2013 (JANUARY – MARCH)

HEMPSTEAD INTERSECTION STREET FORMER MANUFACTURED GAS PLANT SITE VILLAGES OF HEMPSTEAD AND GARDEN CITY NASSAU COUNTY, NEW YORK 11550

Prepared for:

National Grid 175 East Old Country Rd. Hicksville, NY 11801

Prepared by:

URS Corporation 77 Goodell Street Buffalo, New York 14203

September 2013

TABLE OF CONTENTS

		<u>F</u>	Page No
EXEC	UTIVE	SUMMARY	E-1
1.0	INTR	ODUCTION	1-1
2.0	FIELI	O ACTIVITIES	2-1
	2.1	Groundwater Depth and NAPL Thickness Measurements	2-1
	2.2	NAPL Recovery	
	2.3	Groundwater Sampling	
	2.4	Groundwater Treatment System Operation	
3.0	RESU	LTS	3-
	3.1	Dissolved-Phase Plume	3-1
	3.2	Potentiometric Heads and NAPL Thickness	3-2
	3.3	Groundwater Analytical Results	3-2
	3.4	NAPL Recovery Volumes	3-3
	3.5	Groundwater Treatment System Performance	3-3
4.0	SUM	MARY	4-
Refere	ences		R4-1
		TABLES (Following Text)	
Table	1	Summary of Field Activities: Water Level Measurements, NAPL Thickne Measurements, NAPL Recovery, and Water Quality Sampling, First Quar 2013	
Table	2	Groundwater and NAPL Measurements, First Quarter 2013	
Table	3	NAPL Recovery, First Quarter 2013	
Table	4	Dissolved-Phase Concentrations of Total BTEX and Total PAH Compound	nds,
		First Quarter 2013	
Table	5	Groundwater Treatment Performance Monitoring, First Quarter 2013	

2013 1st QUARTER GROUNDWATER SAMPLING, NAPL MONITORING, AND GROUNDWATER TREATMENT PERFORMANCE REPORT

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE

FIGURES

(Following Tables)

Figure 1	Location Map
Figure 2	Site Map – March 2013
Figure 3	Soil Remediation and Groundwater Treatment Locations
Figure 4	Extent of Dissolved-Phase Plume and Groundwater Analytical Results – March 2013
Figure 5	Potentiometric Surface Map for Shallow Groundwater, March 8, 2013
Figure 6	Potentiometric Surface Map for Intermediate Groundwater, March 8, 2013
Figure 7	Potentiometric Surface Map for Deep Groundwater, March 8, 2013
Figure 8	Total Dissolved-Phase BTEX/ PAH Concentrations and Free Product Thickness, First Quarter 2013

APPENDICES

(Following Figures)

Appendix A Data Usability Summary Report

Appendix B Oxygen System Operation & Maintenance Measurements

ACRONYMS AND ABBREVIATIONS

amsl above mean sea level

BTEX benzene, toluene, ethylbenzene, xylenes

DNAPL dense non-aqueous phase liquid

DO dissolved oxygen
DTW depth to water

DUSR data usability summary report

F&N Fenley & Nicol Environmental, Inc.

ft foot (feet) ft/ft feet per feet

HIMW Hempstead Intersection (Street) Monitoring Well

IPR Intersection (Street) Product Recovery

ISS In Situ Solidification

LNAPL light non-aqueous phase liquid

LOCID Location Identifier

MGP manufactured gas plant
μg/L micrograms per liter
MP monitoring points
NA not accessible

NAPL non-aqueous phase liquid

ND not detected NM not measured

NYSDEC New York State Department of Environmental Conservation

ORP oxidation-reduction potential

PAHs polycyclic aromatic hydrocarbons

PID photo ionization detector

PZ piezometer
QC quality control
TOR top of riser

URS URS Corporation

USEPA United States Environmental Protection Agency

URS CORPORATION

EXECUTIVE SUMMARY

This report provides a summary of field activities, analytical results, and data interpretations associated with groundwater sampling, gauging and recovery of non-aqueous phase liquid (NAPL), and with the groundwater treatment systems at the Hempstead Intersection Street Former Manufactured Gas Plant (MGP) site during the First Quarter (January, February, and March) 2013.

Groundwater monitoring and sampling was conducted on March 8 – March 20, 2013. This included measuring the depth to groundwater and NAPL thickness in approximately 53 wells. Groundwater samples were collected from 25 wells and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs).

NAPL monitoring and recovery was conducted on February 24 and March 17 for a total of two events in the First Quarter of 2013.

The following results were obtained from the groundwater sampling and NAPL monitoring events:

- The general direction of groundwater flow in the First Quarter 2013 in the shallow, intermediate, and deep water-bearing zones was south at an average gradient of approximately 0.002 feet per feet (ft/ft) for the shallow, intermediate, and deep water bearing zones.
- The 100 ug/L dissolved-phase plume extended approximately 1,125 ft south of the site boundary.
- Dense non-aqueous phase liquid (DNAPL) was detected in 14 of the existing 17
 wells during the First Quarter. The wells were located within a parking lot
 immediately south of the site.
- NAPL recovery activities resumed in February 2013. Approximately 745 gallons of NAPL was recovered between April 2007 and July 2011. Approximately 22.11 gallons of NAPL were recovered during the First Quarter of 2013.

URS CORPORATION

 Based on a comparison between the First Quarter 2013 and Fourth Quarter 2012 data and the previous 2012 data, the concentrations of total BTEX and total PAHs remained stable in most site monitoring wells, although reductions in PAH concentrations in well HIMW-20I reduced the estimated size of the groundwater plume.

The first of two oxygen delivery systems (System No. 2) started operating in October 2010 and promoted aerobic conditions in the aquifer near the system during the First Quarter of 2013. The second of two oxygen delivery systems (System No. 1) started operating in April 2011 and promoted aerobic conditions in the aquifer near the system during the First Quarter of 2013.

Bimonthly headspace and water quality parameters were collected from the monitoring points for Systems No. 1 and No. 2 by Fenley & Nicol Environmental, Inc. (F&N). During the First Quarter, F&N monitored System No. 1 and No. 2 during six events.

The reported dissolved oxygen concentrations that were collected during the Second, Third, and Fourth Quarter 2012 were much lower than part of the First Quarter 2013 or in 2011 with no other change in the operation of the oxygen delivery systems. This drop in reported dissolved oxygen concentrations is considered the result of the use of a faulty dissolved oxygen (DO) meter. URS does not consider this reported data valid and does not agree that it accurately represents dissolved oxygen conditions around the systems. F&N repaired the malfunctioning equipment so subsequent DO readings are considered valid. Based on supplemental data of groundwater sampling DO readings, well headspace readings, system operation and maintenance information, as well as the stable levels of contaminants in the groundwater sampling data, URS believes that the oxygen delivery systems have maintained DO concentrations suitable for aerobic biodegradation.

1.0 INTRODUCTION

This quarterly report summarizes the field activities, analytical results, and data interpretations associated with groundwater quality sampling, gauging, and recovery of NAPL, and the monitoring of the groundwater treatment systems at the Hempstead Intersection Street Former MGP site during the First Quarter 2013 (refer to Figures 1 and 2).

Quarterly groundwater monitoring and bimonthly recovery of NAPL was initiated in April 2007. Separate reports are typically provided for the first three quarters of the year and the fourth quarter data typically gets reported as part of the Annual Report. Separate reports have been issued quarterly since 2007 as listed in the References section of this report.

URS performed the following activities during the First Quarter of 2013:

- Measured the depth to groundwater and NAPL thickness in all accessible on site and off site monitoring wells (on March 8, 2013), see Tables 1 and 2 and Figure 2.
- Recovered NAPL from monitoring wells and product recovery wells in the parking area directly south of the site (February 24 and March 17, 2013), see Tables 1 and 3.
- Collected groundwater samples from 25 monitoring wells for laboratory analysis, see
 Table 4.

F&N also performed water level measurements, well headspace monitoring with a multigas meter (RKI Eagle MultiGas meter), and DO measurements with a DO meter (YSI 55A) on System No. 1 during six events and on System No. 2 during six events in First Quarter 2013. Monitoring is conducted bi-monthly to assess the performance of groundwater treatment systems for System No. 1 and System No. 2. This data is presented in Table 5.

2.0 FIELD ACTIVITIES

The field activities performed by URS during the First Quarter of 2013 included the measurement of the depth to groundwater and NAPL thickness in 53 monitoring wells, the collection of groundwater samples from 25 monitoring wells, and recovery of NAPL from accessible monitoring wells that contained measurable NAPL.

Monitoring wells and piezometers used for these activities are listed in Table 1. First Quarter 2013 groundwater elevations and NAPL thickness values are presented in Table 2, NAPL recovery amounts are presented in Table 3 and the results of groundwater sampling are presented in Table 4.

F&N performed measurements to monitor the performance of the groundwater treatment Systems No. 1 and No. 2 approximately twice monthly during the First Quarter of 2013. F&N collected water level measurements with an electronic oil/water interface probe, well headspace monitoring data with an RKI Eagle Multigas meter, and dissolved oxygen measurements with a YSI 55A dissolved oxygen meter on System No. 1 on January 8, January 22, February 8, February 22, March 8, and March 21 and on System No. 2 on January 8, January 21, February 7, February 21, March 7, and March 20. This data is presented in Table 5.

2.1 Groundwater Depth and NAPL Thickness Measurements

Depths to groundwater and NAPL thickness measurements are listed in Table 2. NAPL thicknesses and recovery amounts are listed in Table 3. An electronic oil/water interface probe was used to measure the depth to groundwater and check for the presence of light non-aqueous phase liquid (LNAPL). DNAPL thickness was measured using a weighted cotton string that absorbs oil.

2.2 NAPL Recovery

NAPL recovery occurred between 2007 and the Third Quarter of 2011 when the In Situ Solidification (ISS) remediation project began. Approximately 745 gallons of NAPL were recovered between 2007 and 2011 when NAPL recovery ended upon the start of ISS treatment. The earlier stage of the ISS treatment project was originally intended to begin in the earlier stages of the project for the office building property, where the majority of the NAPL recovery wells were located. However, the project sequencing changed and the ISS work for the office building property was moved to the end of the project. Therefore, the New York State Department of Environmental Conservation (NYSDEC) requested that National Grid resume NAPL recovery until the ISS work moved into the off-site area.

NAPL levels were monitored in 17 wells and detected in 14 wells during the February 24 and March 17 events (Table 3). All measured NAPL consisted of dense non-aqueous phase liquid (DNAPL) located at the bottom of the wells. Recovery of NAPL was conducted using the appropriate personal protective equipment. First, all accessible wells included in the recovery program were gauged using an oil/water interface probe to determine the depth to water and the depth and thickness to any possible LNAPL at the top of the water column. Wells were then gauged with a weighted cotton string to measure the DNAPL thickness. The DNAPL was recovered using either a Waterra inertial lift pump or a dedicated bailer, if the DNAPL was particularly viscous. Water and product that were recovered were stored in 55-gallon steel drums for subsequent offsite disposal under hazardous waste manifest.

The quantity of recovered DNAPL was estimated based on gallon markings on the side of the purge bucket used to collect the purged liquids during recovery. Table 3 lists the measured DNAPL thicknesses and cumulative recovery amounts for each well during first quarter 2013.

2.3 **Groundwater Sampling**

Low-flow groundwater sampling methods were used to sample groundwater, which consisted of purging groundwater at a rate of between 100 and 250 milliliters per minute. The water was pumped through a flow-through cell and monitored for pH, conductivity, turbidity, DO, temperature, and oxidation-reduction potential (ORP). Purging was continued until stable conditions were achieved (defined as three consecutive stable readings [i.e. \pm 10 percent] over a

15 minute period). Groundwater samples were collected afterwards and shipped under chain-of-custody procedures to H2M laboratories, Inc. for analysis of BTEX (United States Environmental Protection Agency [USEPA] Method 8260B) and PAHs (USEPA Method 8270C). Purge water is stored in an onsite storage tank for subsequent offsite disposal under a non-hazardous waste manifest. The Data Usability Summary Report is presented in Appendix A.

There were 25 monitoring wells sampled during the First Quarter March 8-20, 2013 groundwater sampling event. Results of this groundwater sampling event are presented in Table 4.

2.4 Groundwater Treatment System Operation

The two oxygen delivery systems were installed to treat the groundwater plume. "System No. 1", is located along Smith Street, a portion of the Long Island Railroad Right of Way, and a portion of Hilton Avenue and began operation in April 2011. "System No. 2", extends from Mirschel Park in the east to Kensington Court in the west and began operation in October 2010. Figure 3 shows the locations of the two systems.

The performance of System No. 1 and System No. 2 was monitored by F&N during the First Quarter 2013 through the measurement of water levels, headspace gas, and water quality parameters in the groundwater approximately twice per month, see Table 5. F&N performed water level measurements with an electronic oil/water interface probe, well headspace monitoring with a multi-gas meter (RKI Eagle MultiGas meter), and dissolved oxygen (DO) measurements with a DO meter (YSI 55A). These measurements were collected during the First Quarter for System No. 1 on January 8, January 22, February 8, February 22, March 8, and March 21 for a total of six events. System 2 measurements were collected on January 8, January 21, February 7, February 21, March 7, and March 20 for a total of six events. The full system data is included in Appendix

3.0 RESULTS

3.1 Dissolved-Phase Plume

The extent of the dissolved-phase groundwater plume boundary and the data for First Quarter 2013 are shown in Figure 4. The downgradient boundary of the plume, which is defined by total BTEX or PAH concentrations greater than 100 µg/L, extends approximately 1,125 feet south of the site boundary. This is 195 feet closer to the site boundary than in the Fourth Quarter 2012. Based on comparisons to previous quarterly groundwater monitoring data, the concentrations of total BTEX or PAHs in groundwater sampled during the First Quarter in most site monitoring wells remained relatively stable or decreased.

In March 2013, the concentrations of total BTEX or total PAHs in the furthest downgradient well pair (HIMW-015I/D) ranged from "not detected" (deep well, HIMW-015D) to $14 \mu g/L$ for BTEX and $19 \mu g/L$ for PAH (intermediate well, HIMW-015I). The concentrations of total BTEX or total PAHs in wells located between the site and the HIMW-015 cluster varied from "not detected" to 2,271 $\mu g/L$ for PAH (intermediate well, HIMW-005I), see Figure 4.

The following are some wells showing changes during First Quarter 2013. Wells HIMW-013I, HIMW-020I, HIMW-024, and HIMW-025 are discussed below:

- For HIMW-013I, total BTEX concentrations increased from 7 μ g/L in Fourth Quarter 2012 to 53 μ g/L in March 2013. PAHs increased slightly from 8 μ g/L in Fourth Quarter 2012 to 13 μ g/L in March 2013.
- For HIMW-020I, total BTEX concentrations decreased from 130 μg/L to 6 μg/L, which is the fifth consecutive quarter that total BTEX concentrations decreased at this location.
 In First Quarter 2013 only xylenes were detected (6 μg/L) above laboratory reporting limits. Total PAH concentrations were also significantly lower going from 1,266 μg/L in Fourth Quarter 2012 to 9 μg/L in March 2013.
- For HIMW-024, total BTEX and total PAH concentrations increased from Fourth Quarter 2012 to First Quarter 2013. Total BTEX increased from 34 μg/L to 107 μg/L bringing it

above 100 $\mu g/L$ threshold and the total PAH increased from 13 $\mu g/L$ to 74 $\mu g/L$ in the First Quarter 2013.

• For HIMW-025, BTEX concentrations were lower than the previous quarter, decreasing from 223 μ g/L (above the 100 μ g/L threshold) to "not detected" in First Quarter 2013. The PAHs continued to be "not detected" for the second consecutive quarter.

3.2 Potentiometric Heads and NAPL Thickness

Potentiometric heads and NAPL thickness measurements for First Quarter 2013 are presented in Table 2. Potentiometric surface maps for shallow, intermediate, and deep groundwater zones were developed using this data and are shown in Figures 5, 6, and 7 for First Quarter. The data for First Quarter 2013 indicates that the direction of groundwater flow within the well field was south at an average gradient of approximately 0.002 ft/ft for the shallow, intermediate, and deep water bearing zones. These values are historically consistent.

DNAPL was observed in 14 of the existing 17 wells during the First Quarter 2013. All of the wells where DNAPL was identified are within a parking lot that is immediately south of the site (Figure 8). Wells located within the property boundary of the site were decommissioned in Fourth Quarter 2011 with the start of the ISS remediation project.

3.3 Groundwater Analytical Results

Groundwater analytical results are summarized in Section 3.1 and Table 4 and are illustrated on Figure 4.

A Data Usability Summary Report (DUSR) was prepared following the guidelines provided in NYSDEC Division of Environmental Remediation DER-10, Technical Guidance for Site Investigation and Remediation, Appendix 2B – Guidance for the Development of Data Usability Summary Reports, May 2010. An electronic copy of the DUSR is included as Appendix A. The review included a review of holding times; completeness of all required deliverables; quality control (QC) results (blanks, instrument tunes, calibration standards, matrix spike recoveries, duplicate analyses, and laboratory control sample recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all

samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers. All sample analyses were found to be compliant with the method and validation criteria and the data is useable as reported, except where noted in the DUSRs.

3.4 NAPL Recovery Volumes

The volume of NAPL recovered was 10.86 gallons during the February 24 event and 11.25 gallons during the March 17 event for a total of 22.11 gallons of NAPL recovered during the First Quarter 2013. Approximately 745 gallons of NAPL was recovered between April 2007 and July 2011. To date, a total of 767.11 gallons of NAPL have been recovered since April 2007. Table 3 lists the amount of DNAPL gauged in each well and the total amount recovered during each event.

3.5 Groundwater Treatment System Performance

Groundwater treatment system performance data for First Quarter 2013, as collected and reported by F&N, is presented in Table 5.

An error was discovered regarding the monitoring of both groundwater treatment systems by F&N in 2012 and part of the First Quarter of 2013. The monitoring error is discussed at length in the 2012 Annual Groundwater Sampling, NAPL Monitoring, and Groundwater Treatment Performance Report (URS, 2013a). During January 2013, the data collected by F&N is not considered accurate by URS for the reasons discussed previously in the above referenced report. Equipment malfunctions during the monitoring events on February 7 and 8 prevented F&N from collecting DO readings in monitoring points for Systems No. 1 and 2.

F&N repaired the DO meter equipment malfunction so that starting with the second monitoring event in February 2013, DO readings in both systems collected by F&N are considered reliable measures of the system performance.

System No. 1

The average reported DO for System No. 1 from the last three monitoring events (February 22, March 8, and March 21) in the First Quarter 2013 was 27.81 mg/L. DO readings ranged from a low of 7.42 mg/L at MP-1-5 to a high of 56.27 mg/L at MP-1-3D, which is the deeper of the two monitoring points located near the middle of the delivery line closest to the Oxygen System enclosure. Based on the data collected during the First Quarter of 2013, System No. 1 is performing as expected and creating an aerobic environment in the aquifer.

System No. 2

The average reported DO for System No. 2 from the last three monitoring events (February 21, March 7, and March 20) in the First Quarter 2013 was 33.17 mg/L. DO readings during the last three monitoring events in the First Quarter ranged from a low of 11.68 mg/L at MP-2-4 to a high of 54.30 mg/L at MP-2-3S, which is the shallower of the two monitoring points located near the middle of the delivery line closest to the Oxygen System enclosure. Based on the data collected during the First Quarter of 2013, System No. 2 is performing as expected and creating an aerobic environment in the aquifer.

4.0 SUMMARY

Following is a summary of the First Quarter 2013 groundwater sampling, NAPL monitoring and recovery data, and groundwater treatment performance presented in this report:

- The general direction of groundwater flow in shallow, intermediate, and deep waterbearing zones was south at an average gradient of approximately 0.002 ft/ft for the shallow, intermediate, and deep water bearing zones.
- The 100 μg/L dissolved-phase plume extended up to approximately 1,125 feet south of the site boundary.
- DNAPL was detected in 14 of the existing 17 wells. The wells are located within a parking lot immediately south of the site.
- Approximately 745 gallons of NAPL was recovered between April 2007 and July 2011. Approximately 22.11 gallons of NAPL was recovered in the First Quarter 2013 in two events conducted on February 24 and March 17.
- Based on a comparison of the Third and Fourth Quarter 2012 data and the previous data, the concentrations of total BTEX and total PAHs remained stable for most site monitoring wells, although reductions in PAH concentrations in well HIMW-020I caused the reduction in the estimated size of the groundwater plume.
- The first of two oxygen delivery systems (System No. 2), brought on line in October 2010, is promoting aerobic conditions in the aquifer near the system.
- The second of two oxygen delivery systems (System No. 1), brought on line in April 2011, is promoting aerobic conditions in the aquifer near the system.
- Bimonthly headspace and water quality parameters were collected from the
 monitoring points for Systems No. 1 and No. 2 by F&N. During the First Quarter,
 F&N monitored System No. 1 and No. 2 during six events. Both systems are
 performing as expected and creating an aerobic environment in the aquifer.

REFERENCES

- URS, 2007. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second and Third Quarters of 2007 (April 2007 and July-August 2007) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2008a. 2007 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2008b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2008 (January March 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2008c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2008 (April June 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2009a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2008 (July September 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- URS, 2009b. 2008 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. March.
- URS, 2009c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2009 (January March 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2009d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2009 (April June 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2009e. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2009 (July September 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2010a. 2009 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2010b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2010 (January March 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. April.
- URS, 2010c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2010 (April June 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.

- URS, 2010d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2010 (July September 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2010e. 2010 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2011a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2011 (January March 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. July.
- URS, 2011b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2011 (April June 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2011c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2011 (July- September 2011) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2012a. 2011 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. May.
- URS, 2012b. Groundwater Sampling and Groundwater Treatment Performance Report for the First Quarter of 2012 (January March 2012) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2012c. Groundwater Sampling and Groundwater Treatment Performance Report for the Second Quarter of 2012 (April June 2012) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.
- URS, 2013a. 2012 Annual Groundwater Sampling, NAPL Monitoring, and Groundwater Treatment Performance Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. May.

TABLES

Table 1 Summary of Field Activities: Water Level Measurements, NAPL Thickness Measurements, NAPL Recovery, and Water Quality Sampling First Quarter 2013 (1), (2)

Hempstead Intersection Street Former MGP Site

Well ID	First Quarte	r (March 8 - Marc	ch 20, 2013)	NAPL Monitorir Recovery	
	Water	NAPL	Water	February 24,	March 17,
	Level	Thickness	Quality	2013	2013
HIMW-002S*			·		
HIMW-002I*					
HIMW-002D*					
HIMW-003S	Х	Х	Χ		
HIMW-003I	Х	Х	Χ		
HIMW-003D	X	Х	Х		
HIMW-004S	X	Х			
HIMW-004I	X	Х			
HIMW-004D	Χ	Х			
HIMW-005S	Χ	Х	Х		
HIMW-005I	X	X	X		
HIMW-005D	X	X	X		
HIMW-008S	X	X	Х		
HIMW-008I	Χ	Х	Х		
HIMW-008D	Х	Х	Χ		
HIMW-009S	Χ	Х			
HIMW-009I	X	Х			
HIMW-009D	Χ	Х			
HIMW-010S	Χ	Х			
HIMW-010I	Χ	Х			
HIMW-010D**					
HIMW-011S	Х	Х			
HIMW-011I	X	X			
HIMW-011D	X	X			
HIMW-012S	Х	Х	Х		
HIMW-012I	Х	Х	Х		
HIMW-012D	Х	Х	Х		
HIMW-013S	Х	Х	Х		
HIMW-013I	Х	Х	Х		
HIMW-013D	Х	Х	Х		
HIMW-014I	Х	Х	Х		
HIMW-014D	Х	Х	Х		
HIMW-015I	Х	Х	Х		
HIMW-015D	Х	Х	Х		
HIMW-016S	X	X			
HIMW-016I	Χ	Х			
HIMW-017S	Х	Х		Х	
HIMW-20S	Х	Х	Х		
HIMW-20I	Х	X	X		
HIMW-21	X	X		Х	
HIMW-22	X	X	Х		
HIMW-23	Х	Х	Х		
HIMW-24	X	X	Х		
HIMW-25	X	X	Х		
PZ-02					
PZ-03					-

Table 1

Summary of Field Activities: Water Level Measurements, NAPL Thickness Measurements, NAPL Recovery, and Water Quality Sampling

First Quarter 2013 (1), (2) Hempstead Intersection Street Former MGP Site

Well ID		r (March 8 - Marc		NAPL Monitori Recover	y Events
	Water	NAPL	Water	February 24,	March 17,
	Level	Thickness	Quality	2013	2013
IPR-14	Х	X			
IPR-15	Х	Х			
IPR-16	Х	Х			Х
IPR-17	Х	Х			
IPR-18	Х	Х			
IPR-19S***					
IPR-19D	Х	Х			
IPR-20	Х	Х			X
IPR-21	Х	Х			X
IPR-22	X	X		Х	
IPR-23	X	X			
IPR-24	X	X			
IPR-29	X	X		Χ	
IPR-30	Х	Х			_
OSMW-01					
OSMW-02					
OSMW-03			•		

Notes:

- 1 Field marked with "X" indicates that the activity was performed.
- 2 Blank field indicates that the activity was not performed.
- During 2012, the stick up risers at HIMW-002 S, I, and D were cut to grade. Water levels were not collected because the locations were not resurveyed.
- ** HIMW-10D was destroyed by sidewalk/driveway construction.
- *** IPR-19S is covered with cold patch and is inaccessible.

Table 2 Groundwater and NAPL Measurements First Quarter 2013 Hempstead Intersection Street Former MGP Site

		Elevation	Depth to	Depth to	Depth to	Well	Thickness	Thickness	Corrected Potentiometric
Well ID	Date	of TOR	LNAPL	Water	DNAPL	Depth	of LNAPL	of DNAPL	Head (1)
		[ft amsl]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]
HIMW-002S	3/8/2013	73.82	NM	NM	NM	39.8	NM	NM	NM
HIMW-002I	3/8/2013	78.87	NM	NM	NM	88.8	NM	NM	NM
HIMW-002D	3/8/2013	74.13	NM	NM	NM	110.8	NM	NM	NM
HIMW-003S	3/8/2013	65.00	ND	17.93	ND	34.5	0	0.00	47.07
HIMW-003I	3/8/2013	64.94	ND	18.13	ND	85.3	0	0.00	46.81
HIMW-003D	3/8/2013	65.26	ND	18.63	ND	142.8	0	0.00	46.63
HIMW-004S	3/8/2013	72.74	ND	26.34	ND	41.6	0	0.00	46.40
HIMW-004I	3/8/2013	72.78	ND	26.42	ND	90.4	0	0.00	46.36
HIMW-004D	3/8/2013	72.65	ND	26.71	ND	177.1	0	0.00	45.94
HIMW-005S	3/8/2013	67.19	ND	20.68	ND	38.9	0	0.00	46.51
HIMW-005I	3/8/2013	67.22	ND	20.75	ND	91.9	0	0.00	46.47
HIMW-005D	3/8/2013	67.22	ND	21.28	ND	139.6	0	0.00	45.94
HIMW-008S	3/8/2013	65.04	ND	18.98	ND	37.0	0	0.00	46.06
HIMW-008I	3/8/2013	65.14	ND	19.06	ND	75.0	0	0.00	46.08
HIMW-008D	3/8/2013	64.93	ND	18.92	ND	114.6	0	0.00	46.01
HIMW-009S	3/8/2013	70.03	ND	23.42	ND	39.6	0	0.00	46.61
HIMW-009I	3/8/2013	69.93	ND	23.38	ND	80.5	0	0.00	46.55
HIMW-009D	3/8/2013	69.96	ND	23.48	ND	122.8	0	0.00	46.48
HIMW-010S	3/8/2013	71.60	ND	24.06	ND	39.1	0	0.00	47.54
HIMW-010I	3/8/2013	71.47	ND	23.82	ND	89.8	0	0.00	47.65
HIMW-010D ⁽²⁾	3/8/2013	71.44	NM	NM	NM	136.0	0	0.00	NM
HIMW-011S	3/8/2013	71.62	22.75	24.45	ND	39.9	0	0.00	47.17
HIMW-011I	3/8/2013	71.43	ND	24.25	ND	93.0	0	0.00	47.18
HIMW-011D	3/8/2013	71.39	ND	24.27	ND	122.1	0	0.00	47.12
HIMW-012S	3/8/2013	61.58	ND	16.78	ND	33.0	0	0.00	44.80
HIMW-012I	3/8/2013	61.59	ND	18.63	ND	74.5	0	0.00	42.96
HIMW-012D	3/8/2013	61.82	ND	18.23	ND	128.3	0	0.00	43.59
HIMW-013S	3/8/2013	72.83	ND	30.07	ND	48.6	0	0.00	42.76
HIMW-013I	3/8/2013	72.60	ND	29.82	ND	81.5	0	0.00	42.78
HIMW-013D	3/8/2013	72.53	ND	29.57	ND	121.9	0	0.00	42.96
HIMW-014I	3/8/2013	71.71	ND	29.02	ND	96.5	0	0.00	42.69
HIMW-014D	3/8/2013	71.59	ND	30.73	ND	152.0	0	0.00	40.86
HIMW-015I	3/8/2013	64.18	ND	24.54	ND	92.5	0	0.00	39.64
HIMW-015D	3/8/2013	63.96	ND	25.64	ND	153.1	0	0.00	38.32
HIMW-016S	3/8/2013	67.45	ND	20.74	28.91	34.4	0	5.50	46.71
HIMW-016I	3/8/2013	67.50	ND	20.88	77.16	82.7	0	5.50	46.62
HIMW-017S	3/8/2013	65.96	ND	19.60	36.40	36.7	0	0.30	46.36
HIMW-020S	3/8/2013	70.43		24.94	ND	36.6	0	0.00	45.49
HIMW-020I	3/8/2013	70.30	ND	24.78	ND	74.5	0	0.00	45.52

Table 2 Groundwater and NAPL Measurements First Quarter 2013 Hempstead Intersection Street Former MGP Site

Well ID	Date	Elevation of TOR	Depth to LNAPL	Depth to Water	Depth to DNAPL	Well Depth	Thickness of LNAPL	Thickness of DNAPL	Corrected Potentiometric Head (1)
		[ft amsl]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]
HIMW-021	3/8/2013	NM	ND	19.24	42.1	45.3	0	3.20	NM
HIMW-022	3/8/2013	NM	ND	29.93	ND	64.4	0	0.00	NM
HIMW-023	3/8/2013	NM	ND	30.08	ND	75.6	0	0.00	NM
HIMW-024	3/8/2013	NM	ND	14.51	ND	55.0	0	0.00	NM
HIMW-025	3/8/2013	NM	ND	16.89	ND	52.3	0	0.00	NM
PZ-02	3/8/2013	72.96	NM	NM	NM	35.3	NM	NM	NM
PZ-03	3/8/2013	64.58	NM	NM	NM	29.5	NM	NM	NM
IPR-14	3/8/2013	66.93	ND	20.14	ND	44.4	0	0.50	46.79
IPR-15	3/8/2013	67.93	ND	21.11	ND	44.4	0	0.01	46.82
IPR-16	3/8/2013	69.49	ND	22.64	47.75	49.1	0	1.30	46.85
IPR-17	3/8/2013	70.60	ND	23.68	54.01	54.1	0	0.10	46.92
IPR-18	3/8/2013	66.87	ND	20.21	ND	50.0	0	0.00	46.66
IPR-19S ⁽²⁾	3/8/2013	67.68	NM	NM	NM	45.1	NM	NM	NM
IPR-19D	3/8/2013	67.96	ND	21.21	ND	89.9	0	0.00	46.75
IPR-20	3/8/2013	66.70	ND	20.15	43.40	45.4	0	2.00	46.55
IPR-21	3/8/2013	67.67	ND	21.05	39.46	45.0	0	5.50	46.62
IPR-22	3/8/2013	66.33	ND	19.89	40.90	45.4	0	4.50	46.44
IPR-23	3/8/2013	66.67	ND	20.21	45.40	45.4	0	0.00	46.46
IPR-24	3/8/2013	65.88	ND	19.52	ND	44.4	0	2.30	46.36
IPR-29	3/8/2013	NM	ND	19.51	45.7	49.7	0	4.00	NM
IPR-30	3/8/2013	NM	ND	20.51	47.7	50.0	0	2.30	NM
OSMW-01	3/8/2013	71.12	NM	NM	NM	42.2	0	NM	NM
OSMW-02	3/8/2013	71.59	NM	NM	NM	45.1	0	NM	NM
OSMW-03	3/8/2013	71.39	NM	NM	NM	44.7	0	NM	NM

Notes:

(1) Potentiometric heads in wells containing LNAPL are corrected using a specific gravity = 0.96

(2) HIMW-010D was destroyed in Third Quarter 2011. HIMW-019S is covered with cold patch and inaccessible.

sheen = assumed thickness of 0.01 ft

NM not measured

LNAPL light non-aqueous phase liquid
DNAPL dense non-aqueous phase liquid

TOR top of riser

amsl above mean sea level ND NAPL not detected

Table 3 NAPL Recovery First Quarter 2013

Hempstead Intersection Street Former MGP Site

		F	ebruary 24, 20	13		March 17, 201	3
Well ID	Well Diameter	Thickness of LNAPL	Thickness of DNAPL	Volume of NAPL	Thickness of LNAPL	Thickness of DNAPL	Volume of NAPL
	Diameter			Removed			Removed
		[ft]	[ft]	[gal]	[ft]	[ft]	[gal]
HIMW-016S	2	ND	5.50	0.00	ND	5.50	0.00
HIMW-016I	2	ND	5.50	0.00	ND	5.50	0.00
HIMW-017S	2	ND	2.10	0.36	ND	0.30	0.00
HIMW-021	6	ND	5.00	2.50	ND	1.0	0.00
IPR-14	6	ND	0.50	0.00	ND	0.5	0.00
IPR-15	6	ND	trace	0.00	ND	trace	0.00
IPR-16	5.75	ND	1.20	0.00	ND	1.4	2.10
IPR-17	5.75	ND	0.10	0.00	ND	0.1	0.00
IPR-18	6	ND	0.00	0.00	ND	0.00	0.00
IPR-19S ⁽¹⁾	6	NM	NM	0.00	NM	NM	0.00
IPR-19D	6	ND	0.00	0.00	ND	0.00	0.00
IPR-20	6	ND	1.90	0.00	ND	2.10	3.15
IPR-21	6	ND	5.20	0.00	ND	6.00	6.00
IPR-22	6	ND	5.50	3.00	ND	4.50	0.00
IPR-23	6	ND	0.00	0.00	ND	0.00	0.00
IPR-24	6	ND	2.30	0.00	ND	2.00	0.00
IPR-29	6	ND	9.00	5.00	ND	4.6	0.00
IPR-30	6	ND	2.50	0.00	ND	2.5	0.00
		Volume Rem	noved	10.86	Volume Ren	noved	11.25

Total volume recovered during the First Quarter 2013: 22.11
Total volume of NAPL recovered since April 2007: 767.11

Notes:

(1) HIMW-019S is covered with cold patch and inaccessible.

LNAPL Light Non-Aqueous Phase Liquid
DNAPL Dense Non-Aqueous Phase Liquid

ND NAPL Not Detected NM Not Measured

Table 4

Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds First Quarter of 2013

Hempstead Intersection Street Former MGP Site

	First Quarter 2013							
		arch 20, 2013						
Well ID		•						
	BTEX	PAH						
	[ug/L]	[ug/L]						
HIMW-002D								
HIMW-002I								
HIMW-002S	ND	ND						
HIMW-003D	ND ND	ND ND						
HIMW-003I	ND ND	ND ND						
HIMW-003S	ND	ND						
HIMW-004D								
HIMW-004I								
HIMW-004S	0.4	000						
HIMW-005D	64	900						
HIMW-005I	95 (DUP - 97)	2,271 (DUP - 2,041)						
HIMW-005S	ND ND	1						
HIMW-008D	ND ND	ND NB						
HIMW-008I	ND 27	ND						
HIMW-008S	27	3						
HIMW-009D								
HIMW-009I								
HIMW-009S								
HIMW-010D								
HIMW-010I								
HIMW-010S								
HIMW-011D								
HIMW-011I								
HIMW-011S								
HIMW-012D	ND	ND						
HIMW-012I	47	109						
HIMW-012S	ND	ND						
HIMW-013D	3	9						
HIMW-013I	53	13						
HIMW-013S	ND	ND						
HIMW-014D	ND	ND						
HIMW-014I	38	43						
HIMW-015D	ND	ND						
HIMW-015I	14	19						
HIMW-016I								
HIMW-016S								
HIMW-017S								
HIMW-020I	6 (DUP - 6)	9 (DUP - 8)						
HIMW-020S	ND -	ND						
HIMW-022	9	17						
HIMW-023	ND	ND						
HIMW-024	107	74						
HIMW-025	ND	ND						
PZ-02								
PZ-03								

Notes:

A blank field is "Not Sampled".

NAPL is periodically identified in this well.

ND Not Detected.
ug/L micrograms per liter

Table 5 **Groundwater Treatment Performance Monitoring** First Quarter 2013 **Hempstead Intersection Street Former MGP Site**

System #1

			January	8, 2013			January 22, 2013						February 8, 2013							February 22, 2013				
ID	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1S	NM	28.0	0.0	2.89	NM	NM	26.66	NM	0.0	10.07	NM	NM	26.81	40.0	0.0	NM	NM	NM	26.69	40.0	0.2	16.98	NM	NM
MP-1-1D	NM	20.6	0.0	2.54	2.85	3.13	26.52	NM	0.0	18.70	18.01	17.40	26.62	22.7	0.0	NM	NM	NM	26.52	22.3	0.0	13.41	12.76	11.82
MP-1-2S	NM	23.1	0.0	3.18	NM	NM	21.01	NM	0.0	9.46	NM	NM	21.16	39.1	0.0	NM	NM	NM	21.05	38.3	0.6	28.50	NM	NM
MP-1-2D	NM	20.7	0.0	3.61	3.31	2.9	20.64	NM	0.0	11.14	9.00	7.79	20.75	21.0	0.0	NM	NM	NM	20.57	35.4	0.0	47.37	45.44	40.91
MP-1-3S	NM	19.1	0.0	2.83	NM	NM	18.71	NM	0.0	8.07	NM	NM	18.85	20.9	0.0	NM	NM	NM	18.77	23.7	0.0	25.47	NM	NM
MP-1-3D	NM	19.1	0.0	4.55	3.05	2.39	18.73	NM	0.0	12.71	10.11	9.01	18.82	20.9	0.3	NM	NM	NM	18.79	20.9	0.0	25.04	22.51	19.31
MP-1-4S	NM	23.2	0.0	2.65	NM	NM	21.38	NM	0.0	7.00	NM	NM	21.36	40.0	0.0	NM	NM	NM	21.34	20.9	0.0	23.14	NM	NM
MP-1-4D	NM	20.9	0.0	2.63	2.14	2.45	21.51	NM	0.3	7.11	7.69	8.40	21.52	32.2	0.5	NM	NM	NM	21.52	20.9	0.0	29.60	27.52	21.00
MP-1-5	NM	19.3	0.0	3.09	NM	NM	26.03	NM	0.0	17.87	NM	NM	26.30	21.6	0.0	NM	NM	NM	26.18	20.9	0.0	24.53	NM	NM
MP-1-6	NM	18.8	0.0	2.54	NM	NM	18.54	NM	0.0	6.19	NM	NM	18.59	20.9	0.0	NM	NM	NM	18.57	20.9	0.0	10.76	NM	NM
MP-1-7	NM	19.0	0.0	2.17	NM	NM	21.85	NM	0.0	5.12	NM	NM	21.88	20.9	0.0	NM	NM	NM	21.83	20.9	0.0	23.14	NM	NM
MP-1-8	NM	18.7	0.0	2.24	NM	NM	22.93	NM	0.0	4.97	NM	NM	22.98	30.0	0.0	NM	NM	NM	22.90	20.9	0.0	10.12	NM	NM

			March 8	8, 2013					March 2	1, 2013		
ID	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1S	26.49	40.1	0.0	22.87	NM	NM	26.24	39.7	0.0	24.78	NM	NM
MP-1-1D	26.33	23.8	0.1	42.41	21.12	19.18	26.11	23.7	0.0	49.45	21.82	19.17
MP-1-2S	20.94	37.5	0.4	29.95	NM	NM	20.53	40.0	0.0	30.31	NM	NM
MP-1-2D	20.4	35.9	0.0	46.77	33.41	30.01	20.01	25.4	0.0	42.12	37.19	21.79
MP-1-3S	18.57	22.5	0.2	28.68	NM	NM	18.28	27.7	0.0	38.71	NM	NM
MP-1-3D	18.61	21.1	0.0	35.21	31.35	29.18	18.32	24.5	0.0	56.27	42.47	39.00
MP-1-4S	21.15	22.7	0.0	29.60	NM	NM	20.83	25.8	0.0	43.75	NM	NM
MP-1-4D	21.33	22.9	0.0	32.79	23.37	20.11	21.03	24.7	0.0	27.82	40.20	49.14
MP-1-5	25.98	20.9	0.0	30.61	NM	NM	25.72	20.9	0.0	21.05	NM	NM
MP-1-6	18.40	20.9	0.0	8.89	NM	NM	18.09	20.9	0.0	7.42	NM	NM
MP-1-7	21.65	20.9	0.0	25.29	NM	NM	21.35	20.9	0.0	21.14	NM	NM
MP-1-8	22.77	20.9	0.0	17.93	NM	NM	18.09	20.9	0.0	9.11	NM	NM

<u>Abbreviations</u>

DTW: Depth to water (feet)

O₂: Oxygen measurement of well headspace (percent oxygen)
PID: Photoionization Detector measurement of well headspace (parts per million)
DO: Dissolved Oxygen concentration (percent or milligrams per liter)

NA: Not Accessible

NM: Not Measured

DO Headspace monitor oxygen detection limit is 40.0%; normal oxygen level in air is 20.9%

Table 5 **Groundwater Treatment Performance Monitoring** First Quarter 2013 **Hempstead Intersection Street Former MGP Site**

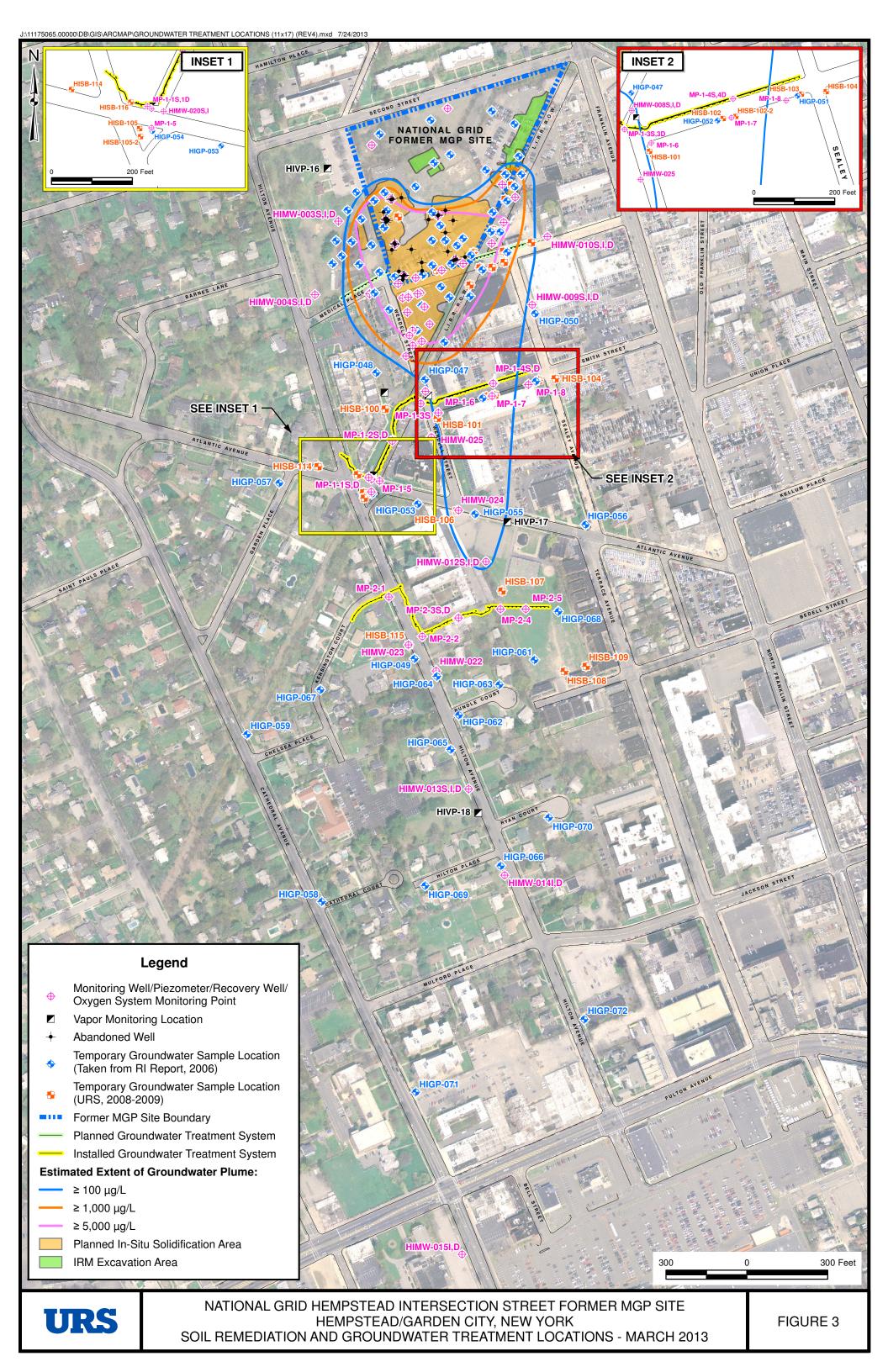
System #2

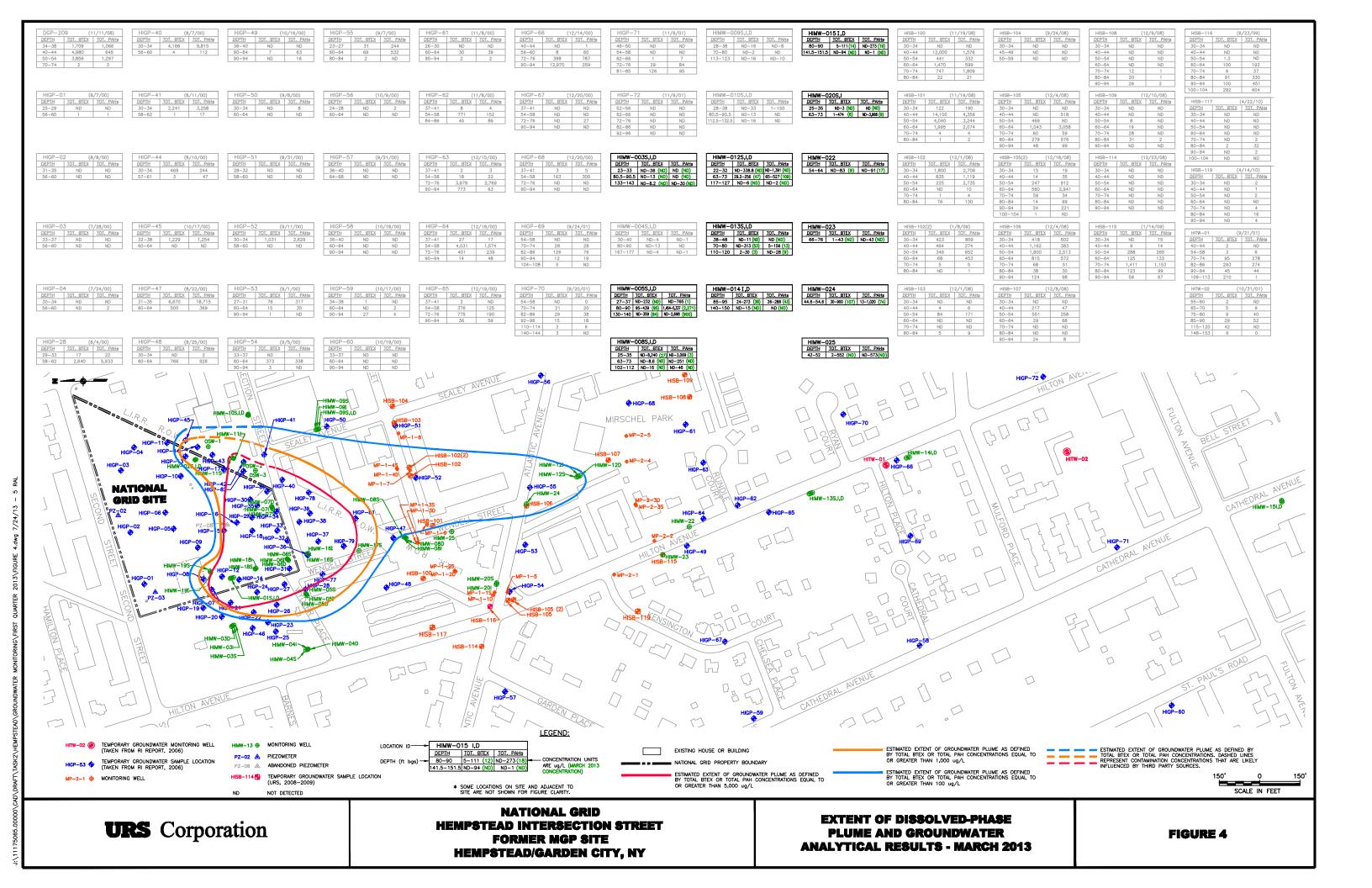
	January 8, 2013							January 21, 2013							February 7, 2013						February 21, 2013					
ID	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top		
MP-2-1	NM	20.9	0.0	2.42	NM	NM	29.63	NM	0.0	12.18	NM	NM	29.82	21.4	0.0	NM	NM	NM	29.65	20.9	0.0	17.42	NM	NM		
MP-2-2	NM	18.0	0.0	2.91	2.61	2.53	30.15	NM	0.0	15.05	9.48	8.30	30.91	21.9	0.0	NM	NM	NM	30.71	20.9	0.0	35.41	33.39	23.12		
MP-2-3S	NM	18.5	0.0	3.08	3.17	3.11	30.82	NM	0.0	8.88	9.04	8.11	31.01	22.4	0.0	NM	NM	NM	30.82	23.4	0.5	51.21	45.36	44.14		
MP-2-3D	NM	20.9	0.0	2.32	2.86	3.19	31.01	NM	0.3	9.74	9.11	8.89	31.22	40.0	0.5	NM	NM	NM	31.01	40.0	0.0	47.37	45.91	41.14		
MP-2-4	NM	20.3	0.0	3.02	NM	NM	19.53	NM	0.0	11.10	NM	NM	19.68	23.9	0.0	NM	NM	NM	19.44	22.6	0.0	15.50	NM	NM		
MP-2-5	NM	20.2	0.0	3.20	3.04	3.08	17.73	NM	0.0	8.12	12.68	9.43	17.85	21.3	0.0	NM	NM	NM	17.63	20.9	0.0	31.39	38.56	28.21		

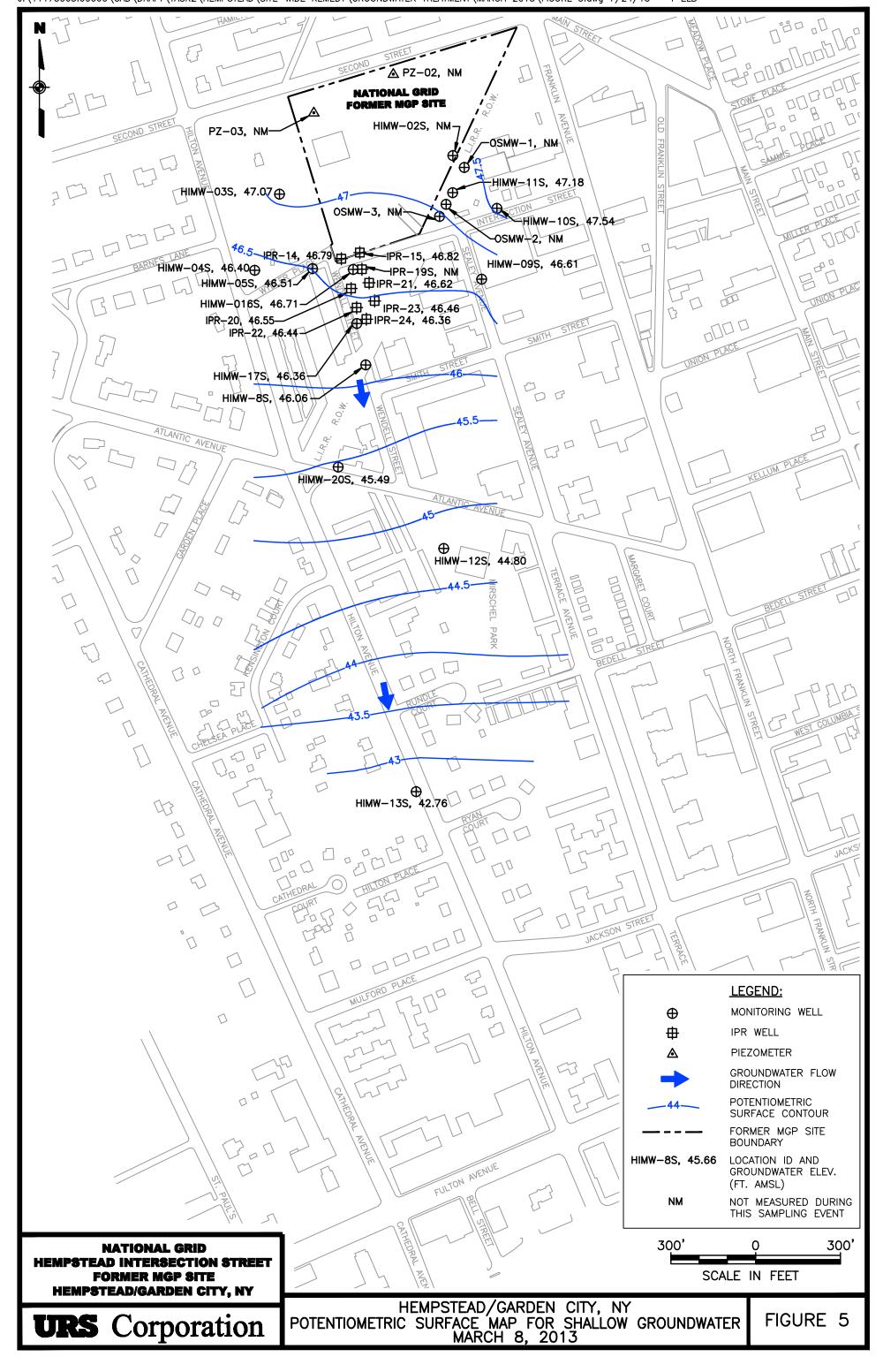
			March :	7, 2013					March 2	0, 2013		
ID	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top	DTW (ft)	O ₂ Head- space (%O ₂) ⁽¹⁾	PID (ppm)	DO (mg/L) Bottom	DO (mg/L) Middle	DO (mg/L) Top
MP-2-1	29.51	20.9	0.0	17.35	NM	NM	29.28	20.9	0.0	22.67	NM	NM
MP-2-2	30.60	20.9	0.0	41.71	40.11	25.75	30.36	20.9	0.0	44.12	NM	NM
MP-2-3S	30.68	20.9	0.0	54.30	52.44	47.56	30.45	20.9	0.0	52.10	50.19	44.45
MP-2-3D	30.90	20.9	0.0	46.44	40.11	37.77	30.65	40.0	0.0	40.27	35.05	34.15
MP-2-4	19.34	20.9	0.0	11.68	NM	NM	19.06	22.9	0.0	19.55	NM	NM
MP-2-5	17.53	20.9	0.0	21.02	19.83	21.82	17.24	24.6	0.0	27.47	21.55	29.31

Abbreviations
DTW: Depth to water (feet)

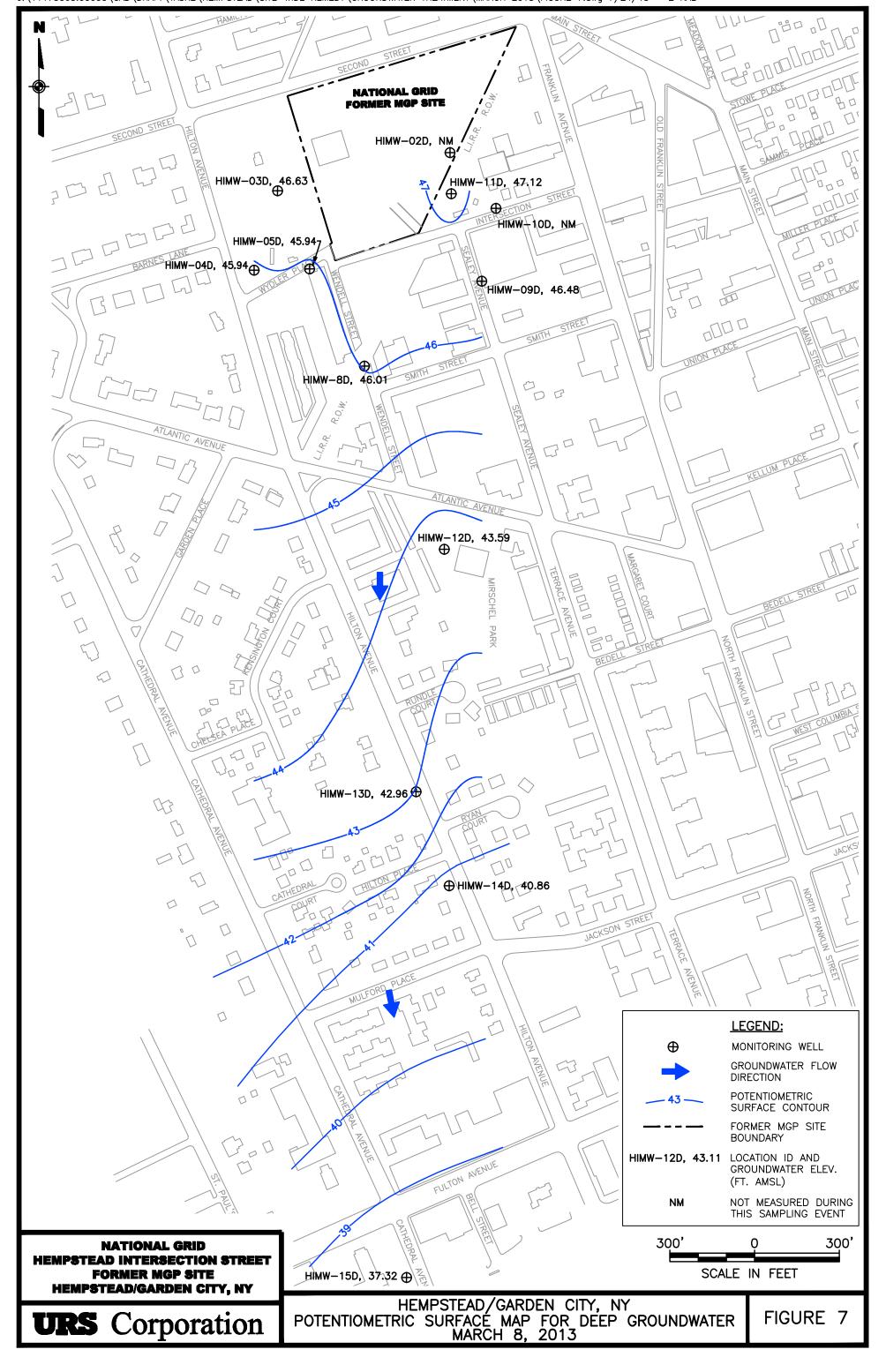
O₂: Oxygen measurement of well headspace (percent oxygen)
PID: Photoionization Detector measurement of well headspace (parts per million)
DO: Dissolved Oxygen concentration (percent or milligrams per liter)


NA: Not Accessible NM: Not Measured


DO Headspace monitor oxygen detection limit is 40.0%; normal oxygen level in air is 20.9%


FIGURES

Æ J:\11175065.00000\CAD\DRAFT\TASK2\HEMPSTEAD\GROUNDWATER MONITORING\FIGURE-1.dwg 3/13/09



Legend

- Monitoring Well Product Detected
- Monitoring Well Product Not Detected Former MGP Site Boundary

Notes:

- **LOCID** Location Identifier
- BTEX Benzene, Toluene, Ethylbenzene, and Xylenes
- PAH Polynuclear Aromatic Hydrocarbons DNAPL - Dense Non-Aqueous Phase Liquid
- LNAPL Light Non-Aqueous Phase Liquid µg/L Micrograms per Liter ft Feet of Product Thickness

ND - Non Detect

HEMPSTEAD/GARDEN CITY, NY TOTAL DISSOLVED-PHASE BTEX/PAH CONCENTRATIONS

AND FREE PRODUCT THICKNESS FIRST QUARTER 2013

400 Feet

400

APPENDIX A DATA USABILITY SUMMARY REPORT

(Provided in Electronic Format Only)

APPENDIX A DATA USABILITY SUMMARY REPORT FIRST QUARTER 2013

HEMPSTEAD INTERSECTION STREET FORMER MGP SITE VILLAGES OF GARDEN CITY AND HEMPSTEAD LONG ISLAND, NEW YORK

Analyses Performed by: H2M LABS, INC.

Prepared For:

NATIONAL GRID

175 EAST OLD COUNTRY RD.

HICKSVILLE, NY 11801

Prepared by:

URS CORPORATION 77 GOODELL STREET BUFFALO, NY 14203

TABLE OF CONTENTS

	Page No.
1.	INTRODUCTION
П.	ANALYTICAL METHODOLOGIES AND DATA VALIDATION A-1
Ш.	DATA DELIVERABLE COMPLETENESS
IV.	SAMPLE RECEIPT/HOLDING TIMES
V.	NON-CONFORMANCES
VI.	SAMPLE RESULTS AND REPORTING
VII.	SUMMARY A-3
	TABLES
	(Following Text)
Table A	A-1 Validated Groundwater Sample Analytical Results
Table A	A-2 Validated Field QC Sample Analytical Results
	APPENDICES (Following Tables)
Attachi	ment A Validated Form 1's
Attachi	ment B Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation *DER-10*, *Technical Guidance for Site Investigation and Remediation*, Appendix 2B - Guidance for Data Deliverables and Development of Data Usability Summary Reports, May 2010.

This DUSR discusses the usability of the analytical data for twenty-five (25) groundwater samples, two (2) field duplicates, one (1) matrix spike/matrix spike duplicate (MS/MSD) pair, one (1) field blank, and three (3) trip blanks collected by URS personnel on March 11-20, 2013. The samples were collected as part of the 2013 1st quarter groundwater monitoring event at the Hempstead Intersection Street Former MGP Site.

II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION

The samples were analyzed by H2M Labs, Inc. (Melville, NY) for the following parameters:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) USEPA Method SW8260B, and
- Polynuclear aromatic hydrocarbons (PAHs) USEPA Method SW8270C.

A limited data validation was performed on the samples in accordance with the guidelines presented in the following USEPA Region II documents:

- Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B, SOP HW-24, Rev. 2, August 2008; and
- Validating Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8270D, SOP HW-22, Rev. 4, August 2008.

The limited data validation included a review of completeness of all required deliverables; holding times; quality control (QC) results (instrument tunes, calibration standards, blanks, matrix

spike recoveries, field duplicate analyses, laboratory control sample (LCS) recoveries, and surrogate/internal standard recoveries) to determine if the data are within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers.

The validated analytical results are presented in Tables A-1 and A-2. Copies of the validated laboratory results (i.e., Form 1's) are presented in Attachment A. Copies of the chain-of-custodies, case narratives, and documentation supporting the qualification of data are presented in Attachment B. Only problems affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

Full deliverable data packages (i.e., NYSDEC ASP Category B or equivalent) were provided by the laboratory, and included all reporting forms and raw data necessary to fully evaluate and verify the reported analytical results.

IV. SAMPLE RECEIPT/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved, and under proper chain-of-custody (COC). All samples were analyzed within the required holding times.

V. NON-CONFORMANCES

The initial PAH analysis of sample HIMW-08S exhibited a low internal standard (IS) recovery for perylene-d12. The subsequent reanalysis exhibited a similar IS response, thus substantiating matrix interference. The associated PAH results from the initial analysis were qualified as estimated ('UJ').

Documentation supporting the qualification of data (i.e., Form 8) is presented in Attachment B.

VI. SAMPLE RESULTS AND REPORTING

All sample results were reported in accordance with method requirements and were adjusted for sample size and dilution factors. BTEX and PAH results detected below the quantitation limits were qualified 'J' by the laboratory. The results reported from secondary dilution analyses were qualified 'D' by the laboratory.

Field duplicates were collected from monitoring well locations HIMW-05I and HIMW-20I, which exhibited good field and analytical precision.

VII. SUMMARY

All sample analyses were found to be compliant with the method and validation criteria, and the data are usable as reported. URS does not recommend the re-collection of any samples at this time.

Prepared By: Peter R. Fairbanks, Senior Chemist

Date: 4/26/13

Reviewed By: Date: 7-24-13

George E. Kisluk, Sentor Chemist

DEFINITIONS OF USEPA REGION II DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- The sample results are reported from a separate secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Location ID			HIMW-003D	HIMW-003I	HIMW-003S	HIMW-005D	HIMW-0051	
Sample ID			HIMW-03D	HIMW-03I	HIMW-03S	HIMW-05D	DUP031913	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (f	t)							
Date Sampled			03/18/13	03/18/13	03/19/13	03/19/13	03/19/13	
Parameter	Units	Criteria*					Field Duplicate (1-1)	
Volatile Organic Compounds								
Benzene	UG/L	20	1 U	1 U	1 U	3	3	
Ethylbenzene	UG/L	- W	1 U	1 U	1 U	1 U	2	
Toluene	UG/L	- 1 3€0	1 U	1 U	1 U	1 U	1 U	
Xylene (total)	UG/L	(a))	1 U	1 U	1 U	61	92	
Total BTEX	UG/L	100	ND	ND	ND	64	97	
Semivolatile Organic Compounds								
2-Methylnaphthalene	UG/L	1#11	10 U	10 U	10 U	69	260 DJ	
Acenaphthene	UG/L	(7/)	10 U	10 U	10 U	1 J	10	
Acenaphthylene	UG/L		10 U	10 U	10 U	27	140 DJ	
Anthracene	UG/L	*	10 U	10 U	10 U	10 U	1 J	
Benzo(a)anthracene	UG/L	*	10 U					
Benzo(a)pyrene	UG/L		10 U					
Benzo(b)fluoranthene	UG/L	> .	10 U					
Benzo(g,h,i)perylene	UG/L	8.00	10 U					
Benzo(k)fluoranthene	UG/L	•	10 U					
Chrysene	UG/L	78	10 U					
Dibenz(a,h)anthracene	UG/L	35	10 U					
Fluoranthene	UG/L	2	10 U					
Fluorene	UG/L	9	10 U	10 U	10 U	1 3 J	19	
Indeno(1,2,3-cd)pyrene	UG/L	(#)	10 U					
Naphthalene	UG/L	(d)	10 U	10 U	10 U	800 D	1,600 D	
Phenanthrene	UG/L	100	10 U	10 U	10 U	10 U	11	
Pyrene	UG/L	ile.	10 U					
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	ND	900	2,041	

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

 $[\]boldsymbol{J}\,$ - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value. Made By_PRF 04/19/13_; Checked By_AMK 04/22/13_

Location ID			HIMW-005I	HIMW-005S	HIMW-008D	HIMW-008I	HIMW-008S
Sample ID			HIMW-05)	HIMW-05S	HIMW-08D	HIMW-08I	HIMW-08S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		((*				•/
Date Sampled			03/19/13	03/19/13	03/20/13	03/20/13	03/20/13
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	1977	3	1 U	1 U	1 U	16
Ethylbenzene	UG/L		3	1 U	1 υ	1 U	2
Toluene	UG/L	*	1 U	1 U	1 U	1 U	3
Xylene (total)	UG/L		89	1 U	1 U	1 U	6
Total BTEX	UG/L	100	95	ND	ND	ND	27
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	7.0	270 DJ	10 U	10 U	10 U	10 U
Acenaphthene	UG/L		10	10 U	10 U	10 U	10 U
Acenaphthylene	UG/L		160 DJ	10 U	10 U	10 U	2 J
Anthracene	UG/L	5.40	1 J	10 U	10 U	10 U	1 J
Benzo(a)anthracene	UG/L	.55	10 U				
Benzo(a)pyrene	UG/L	蹇	10 U	10 U	10 U	10 U	10 UJ
Benzo(b)fluoranthene	UG/L	(£)	10 U	10 U	10 U	10 U	10 UJ
Benzo(g,h,i)perylene	UG/L	(e)	10 U	10 U	10 U	10 U	10 UJ
Benzo(k)fluoranthene	UG/L	100	10 U	10 U	10 U	10 U	10 UJ
Chrysene	UG/L		10 U				
Dibenz(a,h)anthracene	UG/L	())	10 U	10 U	10 U	10 U	10 UJ
Fluoranthene	UG/L	950	10 U				
Fluorene	UG/L	100	19	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L	100	10 U	10 U	10 U	10 U	10 UJ
Naphthalene	UG/L	(2)	1,800 D	1 J	10 U	10 U	10 U
Phenanthrene	UG/L	-	11	10 U	10 U	10 U	10 U
Pyrene	UG/L	*	10 U				
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	2,271	1	ND	ND	3

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value. Made By_PRF 04/19/13_; Checked By_AMK 04/22/13_

Location ID			HIMW-012D HIMW-12D	HIMW-012I HIMW-12I	HIMW-012S HIMW-12S	HIMW-013D HIMW-13D	HIMW-0131
Sample ID Matrix			Groundwater	Groundwater	Groundwater	Groundwater	HIMW-13I Groundwater
Depth Interval (f			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
	()		03/14/13	03/14/13	03/14/13	02/42/42	00/40/40
Date Sampled			03/14/13	03/14/13	03/14/13	03/12/13	03/12/13
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	-	1 U	44	1 U	3	46
Ethylbenzene	UG/L	9	1 U	1 U	1 U	1 U	3
Toluene	UG/L	\$400	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	180	10	3	1 U	1 U	4
Total BTEX	UG/L	100	ND	47	ND	3	53
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	(# 5	10 U	1 J	10 U	10 U	10 U
Acenaphthene	UG/L	•	10 U	36	10 U	3 J	10 U
Acenaphthylene	UG/L	•	10 U	35	10 U	6 J	7 J
Anthracene	UG/L	- 20	10 U	1 J	10 U	10 U	10 U
Benzo(a)anthracene	UG/L	3 33	10 U				
Benzo(a)pyrene	UG/L	7.5	10 U				
Benzo(b)fluoranthene	UG/L	•	10 U				
Benzo(g,h,i)perylene	UG/L		10 U				
Benzo(k)fluoranthene	UG/L	•	10 U				
Chrysene	UG/L		10 U				
Dibenz(a,h)anthracene	UG/L	35	10 U				
Fluoranthene	UG/L		10 U				
Fluorene	UG/L	(à)	10 U	23	10 U	10 U	1 J
Indeno(1,2,3-cd)pyrene	UG/L	(*)	10 U				
Naphthalene	UG/L		10 U	3 J	10 U	10 U	3 J
Phenanthrene	UG/L		10 U	10	10 U	10 U	2 J
Pyrene	UG/L	*	10 U				
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	109	ND	9	13

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

 $[\]mbox{U}$ - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value. Made By_PRF 04/19/13_; Checked By_AMK 04/22/13_

Location ID			HIMW-013S	HIMW-014D	HIMW-014I	HIMW-015D	HIMW-015I
Sample ID			HIMW-13S	HIMW-14D	HIMW-14I	HIMW-15D	HIMW-15I
Matrix	Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)					*	:=0
Date Sampled			03/13/13	03/11/13	03/11/13	03/12/13	03/12/13
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Benzene	UG/L	(#)	1 U	1 U	32	1 U	12
Ethylbenzene	UG/L	(e)	1 U	1 U	2	1 U	1 U
Toluene	UG/L	•	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	*	1 U	1 U	4	1 U	2
Total BTEX	UG/L	100	ND	ND	38	ND	14
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	:**	10 U	10 U	10 U	10 U	10 U
Acenaphthene	UG/L	*	10 U	10 U	15	10 U	4 J
Acenaphthylene	UG/L		10 U	10 U	19	10 U	13
Anthracene	UG/L	*	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	UG/L	.5	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	UG/L		10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	UG/L	340	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	UG/L	(#)	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	UG/L	- S	10 U	10 U	10 U	10 U	10 U
Chrysene	UG/L	286	10 U	10 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	UG/L	11#1	10 U	10 U	10 U	10 U	10 U
Fluoranthene	UG/L	(E)	10 U	10 U	10 U	10 U	10 U
Fluorene	UG/L	*	10 U	10 U	5 J	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L	*	10 U	10 U	10 U	10 U	10 U
Naphthalene	UG/L	7.50	10 U	10 U	10 U	10 U	10 U
Phenanthrene	UG/L	18	10 U	10 U	4 J	10 U	2 J
Pyrene	UG/L	(B)	10 U	10 U	10 U	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	ND	ND	43	ND	19

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

 $[\]mbox{\bf U}$ - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value, Made By_PRF 04/19/13_; Checked By_AMK 04/22/13_

Location ID			HIMW-020I	HIMW-020I	HIMW-020S	HIMW-022	HIMW-023
Sample ID			DUP031513	HIMW-20I	HIMW-20S	HIMW-22	HIMW-23
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t)		(•:	0,€€	-	*	-
Date Sampled			03/15/13	03/15/13	03/15/13	03/13/13	03/13/13
Parameter	Units	Criteria*	Field Duplicate (1-1)				
Volatile Organic Compounds							
Benzene	UG/L		1 U	1 U	1 U	5	1 U
Ethylbenzene	UG/L	-	1 U	1 U	1 U	1 U	1 U
Toluene	UG/L	17	1 U	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	(*)	6	6	1 U	4	1 U
Total BTEX	UG/L	100	6	6	ND	9	ND
Semivolatile Organic Compounds							
2-Methylnaphthalene	UG/L	(4)	2 J	2 J	10 U	10 U	10 U
Acenaphthene	UG/L	(*)	10 U	10 U	10 U	2 J	10 U
Acenaphthylene	UG/L	S	3 J	3 J	10 U	15	10 U
Anthracene	UG/L	•	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	UG/L	(#X	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	UG/L	(2)	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	UG/L	121	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	UG/L	*	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	UG/L		10 U	10 U	10 U	10 U	10 U
Chrysene	UG/L	147	10 U	10 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	UG/L	390	10 U	10 U	10 U	10 U	10 U
Fluoranthene	UG/L		10 U	10 U	10 U	10 U	10 U
Fluorene	UG/L	A	1 J	1 J	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	UG/L	140	10 U	10 U	10 U	10 U	10 U
Naphthalene	UG/L	.œ.	2 J	3 J	10 U	10 U	10 U
Phenanthrene	UG/L	•	10 U	10 U	10 U	10 U	10 U
Pyrene	UG/L	\var_5	10 U	10 U	10 U	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	8	9	ND	17	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

 $[\]boldsymbol{J}\,$ - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value. Made By_PRF 04/19/13_; Checked By_AMK 04/22/13_

Location ID	HIMW-024	HIMW-025 HIMW-25 Groundwater		
Sample ID	HIMW-24			
Matrix	Groundwater			
Depth Interval (f			5 5 3	
Date Sampled			03/15/13	03/20/13
Parameter	Units	Criteria*		
Volatile Organic Compounds				
Benzene	UG/L	œ	59	1 U
Ethylbenzene	UG/L	(7)	1	1 U
Toluene	UG/L	:2)	4	1 U
(ylene (total)	UG/L	(#X)	43	1 U
Total BTEX	UG/L	100	107	ND
Semivolatile Organic Compounds				
2-Methylnaphthalene	UG/L	(#X	10 U	10 U
Acenaphthene	UG/L	:=:	10 U	10 U
Acenaphthylene	UG/L		3 J	10 U
Anthracene	UG/L	? * ?	10 U	10 U
Benzo(a)anthracene	UG/L	5.6.5	10 U	10 U
Benzo(a)pyrene	UG/L	8	10 U	10 U
Benzo(b)fluoranthene	UG/L		10 U	10 U
Benzo(g,h,i)perylene	UG/L	*	10 U	10 U
Benzo(k)fluoranthene	UG/L	- 5	10 U	10 U
Chrysene	UG/L	*	10 U	10 U
Dibenz(a,h)anthracene	UG/L	(e)	10 U	10 U
Fluoranthene	UG/L	J. E \$	10 U	10 U
Fluorene	UG/L	114	10 U	10 U
ndeno(1,2,3-cd)pyrene	UG/L	0.00	10 U	10 U
Naphthalene	UG/L	3.5	67	10 U
Phenanthrene	UG/L	-	4 J	10 U
Pyrene	UG/L	723	10 U	10 U
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	74	ND

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limits

J - The reported concentration is an estimated value.

UJ - Not detected. The reported quantitation limit is an estimated value, Made By_PRF 04/19/13_; Checked By_AMK 04/22/13_

Location ID			FIELDQC	FIELDQC	FIELDQC	FIELDQC
Sample ID			TB031513	TB031913	FB032013	TB 032013
Matrix			Water Quality	Water Quality	Water Quality	Water Quality
Depth Interval (f	t)		(#)			*
Date Sampled			03/15/13	03/19/13	03/20/13	03/20/13
Parameter	Units	Criteria*	Trip Blank (1-1)	Trip Blank (1-1)	Field Blank (1-1)	Trip Blank (1-1)
Volatile Organic Compounds						
Benzene	UG/L		1 U	1 U	1 U	1 U
Ethylbenzene	UG/L	۰	1 U	1 U	1 U	1 U
Toluene	UG/L	•	1 U	1 U	1 U	1 U
Xylene (total)	UG/L	:*:	1 U	1 U	1 U	1 U
Total BTEX	UG/L	100	ND	ND	ND	ND
Semivolatile Organic Compounds						
2-Methylnaphthalene	UG/L	100	NA	NA	10 U	NA
Acenaphthene	UG/L	180	NA	NA	10 U	NA
Acenaphthylene	UG/L		NA	NA	10 U	NA
Anthracene	UG/L	-	NA	NA	10 U	NA
Benzo(a)anthracene	UG/L	Set	NA	NA	10 U	NA
Benzo(a)pyrene	UG/L	05	NA	NA	10 U	NA
Benzo(b)fluoranthene	UG/L	1/21	NA	NA	10 U	NA
Benzo(g,h,i)perylene	UG/L	396	NA	NA	10 U	NA
Benzo(k)fluoranthene	UG/L		NA	NA	10 U	NA
Chrysene	UG/L	-	NA	NA	10 U	NA
Dibenz(a,h)anthracene	UG/L	1980	NA	NA	10 U	NA
Fluoranthene	UG/L	UE:	NA	NA	10 U	NA
Fluorene	UG/L	13	NA	NA	10 U	NA
Indeno(1,2,3-cd)pyrene	UG/L	-	NA	NA	10 U	NA
Naphthalene	UG/L	1-2	NA	NA	10 U	NA
Phenanthrene	UG/L	ě	NA	NA	10 U	NA
Pyrene	UG/L	-	NA	NA	10 U	NA
Total Polynuclear Aromatic Hydrocarbons	UG/L	100	NA	NA	ND	NA

^{*}Criteria- Goundwater Plume Delineation/Design Criteria, Pre-Design Investigation Work Plan for In-Situ Solidification for the Hempstead Intersection Street Former MGP Site, Appendix E, Final, URS 2008.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria
U - Not detected above the reported quantitation limit.

Made By_PRF 04/19/13_; Checked By_AMK 04/22/13_

ATTACHMENT A VALIDATED FORM 1'S

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-03D

Lab Name:	H2M LABS I	NC Con	tract:	
Lab Code:	H2M	Case No.: KEY-URS	BAS No.:	SDG No.: KEY-URS162
Matrix: (so:	il/water)	WATER	Lab Sample ID:	1303924-001A
Sample wt/vo	ol: <u>5</u>	(g/ml) ML	Lab File ID:	13\G18111.
Level: (le	ow/med)	TOM	Date Received:	03/19/13
% Moisture:	not dec.		Date Analyzed:	03/21/13
GC Column:	Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:	(pL)	Soil Aliquot Vol	ume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	······································	. ע
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	Ü
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

SAMPLE	

HIMW-03I

 Lab Name:
 H2M LABS INC
 Contract:

 Lab Code:
 H2M
 Case No.:
 KEY-URS SAS No.:
 SDG No.:
 KEY-URS162

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 1303924-002A

 Sample wt/vol:
 5
 (g/mL) ML
 Lab File ID:
 13\G18112.

 Level:
 (low/med)
 LOW
 Date Received:
 03/19/13

 % Moisture:
 not dec.
 Date Analyzed:
 03/21/13

 GC Column:
 Rtx-624
 ID:
 .18 (mm)
 Dilution Factor:
 1.00

 Soil Extract Volume:
 (pL)
 Soil Aliquot Volume
 (pL)

CAS NO.					or µg/Kg)	JG/L	L Q				
7	1-43-2	Benzene			1		Ü	- 1			
10	8-88-3	Toluene	-		1 20	21:	U	7.02			
10	0-41-4	Ethylbenzene		- 8 1	1		U				
133	0-20-7	Xvlene (total)		- 20	1		U				

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-03S

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS162

Matrix: (soil/water) WATER

Lab Sample ID:

1303924-003A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13}$ \G18113.

Level: (low/med) LOW

Date Received: 03/19/13

% Moisture: not dec.

Date Analyzed: 03/21/13

GC Column: Rtx-624

ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(µL) Soil Aliquot Volume (µL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(µg/L or µg/Kg) UG/L Q

			., .,	
	71-43-2	Benzene	1	U
	108-88-3	Toluene	1	ט
	100-41-4	Ethylbenzene	1	ט
1	330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-05D

Lab Name:	H2M LABS	INC C	ontract:	
		3#83		
Lab Code:	<u>H2M</u>	Case No.: KEY-URS	SAS No.:	SDG No.: KEY-URS162
Matrix: (se	oil/water)	WATER	Lab Sample ID:	1303924-004A
Sample wt/	vol: <u>5</u>	(g/mL) ML	Lab File ID:	13\G18114.
Level: (low/med)	TOM	Date Received:	03/19/13
% Moisture	: not dec.		Date Analyzed:	03/21/13
GC Column:	Rtx-624	ID: <u>.18</u> (r	nm) Dilution Factor:	1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

				CONCENTRALETON CHILLY.				
19	CAS NO.	COMPOUND			(µg/L or	μg/Kg) (JG/L	Q
	71-43-2	Benzene	5.5	the energy set		3	100	
	108-88-3	Toluene			1	1		U
	100-41-4	Ethylbenzene				í		Ü
41	1330-20-7	Xylene (total)				61		

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-05I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS162

Matrix: (soil/water) WATER Lab Sample ID: 1303924-005A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13}$ \G18115.

* * *

Level: (low/med) Low Date Received: 03/19/13

% Moisture: not dec. Date Analyzed: 03/21/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	3	
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	3	
1330-20-7	Xylene (total)	89	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DUP031913 (HIMW-05I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS162

Matrix: (soil/water) WATER

Lab Sample ID:

1303924-007A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 13\G18117.

Level: (low/med) LOW

Date Received: 03/19/13

% Moisture: not dec.

Date Analyzed: 03/21/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(pL)

Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene] 3	
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	2	
1330-20-7	Xylene (total)	92	

VOLATILE ORGANICS ANALYSIS DATA SHEET

	SHIPLE		
		-	_
MW-	058		
	MW-	MW-058	MW-058

Lab Name: H2M LABS	INC Contra	ct:		
Lab Code: HZM	Case No.: KEY-URS SAS	No.:	SDG No.: KEY-URS162	
Matrix: (soil/water)	WATER	Lab Sample ID:	1303924-006A	
Sample wt/vol: 5	(d/mr) Wr	Lab File ID:	13\G18116.	
Level: (low/med)	TOM	Date Received:	03/19/13	
% Moisture: not dec.		Date Analyzed:	03/21/13	
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume:	(pL)	Soil Aliquot Volu	ıme (µL)	
		CONCEN	TRATION UNITS:	
CAS NO.	COMPOUND	(µg/L	or µg/Kg) UG/L Q	
71-43-2	Benzene	n mon me a word	1	
108-88-3	Toluene		1 0	
100-41-4	Ethylbenzene	2 2 1 2	ם ד	
1330-20-7	Xylene (total)		1 0	-55

VOLATILE ORGANICS ANALYSIS DATA SHEET

Toluene

Ethylbenzene

Xylene (total)

108-88-3

100-41-4

1330-20-7

HIMW-08D		

Lab Name:	H2M LABS IN	1C	Cont	ract:			
Lab Code:	н2м	Case No.:	KEY-URS S	AS No.:		SDG No.:	KEY-URS161
Matrix: (so	il/water)	WATER		Lab	Sample ID:	1303A09-0	01A
Sample wt/v	rol: <u>5</u>	(g/mL) <u>ML</u>	Lab	File ID:	13\G18101	•
Level: (1	.ow/med)	LOW		Date	Received:	03/20/13	
% Moisture:	not dec.			Date	Analyzed:	03/21/13	
GC Column:	Rtx-624	ID	: <u>.18</u> (mm)	Dilu	tion Factor:	1.00	
Soil Extrac	t Volume:	((pL)	Soil	Aliquot Volu	me	— ^(pL)
					CONCEN	TRATION U	NITS:
CAS NO.		COMPOUND			(µg/L	or µg/Kg)	UG/L Q
	71-43-2	Benzene	185 4 100 CH 196 1		SERVE EN SERVICE	í	U U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-08I

Lab Name:	H2M LABS	INC	Co	ntract:			
	H2M	Case No.:	KEY-URS	SAS No.:	-1	SDG No.:	KEY-URS161
Matrix: (so	il/water)	WATER		Lab	Sample ID:	1303A09-00	2A
Sample wt/v	ol: <u>5</u>	(g/mL) <u>ML</u>	Lab	File ID:	13\G18109.	
Level: (1	ow/med)	TOM		Date	Received:	03/20/13	
% Moisture:	not dec.			Date	Analyzed:	03/21/13	
GC Column:	Rtx-624	ID	: <u>.18</u> (mm	n) Dilu	tion Factor:	1.00	
Soil Extrac	t Volume:		(pL)	Soil	Aliquot Volu		(pL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	ט
108-88-3	Toluene	1	Ü
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	Ü

VOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-08S		

Lab Name: H2M LABS	INC	Contract:	
Lab Code: H2M	Case No.: KEY-URS	SAS No.:	SDG No.: KEY-URS161
Matrix: (soil/water)	WATER	Lab Sample	ID: <u>1303A09-003A</u>
Sample wt/vol: 5	(g/ml) ML	Lab File ID	: <u>13\G18102.</u>
Level: (low/med)	TiOM	Date Receiv	red: 03/20/13
% Moisture: not dec.		Date Analyz	ed: <u>03/21/13</u>
GC Column: Rtx-624	ID: <u>.18</u>	mm) Dilution Fa	1.00 <u>1.00</u>
Soil Extract Volume:	(hr)	Soil Aliquo	ot Volume(µL)
		1	CONCENTRATION UNITS:
CAS NO.	COMPOUND		(µg/L or µg/Kg) UG/L Q
71-43-2	Benzene		16
108-88-3	Toluene		3
100-41-4	Ethylbenzene		2
1330-20-7	Xylene (total)		6

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

1330-20-7

Xylene (total)

HIMW-12D

Lab Name: H2M LABS	INC Co.	ntract:	
Lab Code: H2M	Case No.: KEY-URS	SAS No.:	SDG No.: KEY-URS161
Matrix: (soil/water)	WATER	Lab Sample ID:	1303787-001A
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	13\G18094.
Level: (low/med)	LOW	Date Received:	03/15/13
% Moisture: not dec.		Date Analyzed:	03/20/13
GC Column: Rtx-624	ID: <u>.18</u> (mr	n) Dilution Factor:	1.00
Soil Extract Volume:	(pr)	Soil Aliquot Vol	ume (µL)
		CONCE	NTRATION UNITS:
CAS NO.	COMPOUND	(µg/L	or µg/Kg) UG/L Q
71-43-2	Benzene	1.001.3	υ
108-88-3	Toluene		1 0
100-41-4	Ethylbenzene		1 0

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-12I

Lab Name:	H2M LABS IN	NC	Contrac		
Lab Code:	H2M	Case No.: KEY	-URS SAS	No.:	SDG No.: <u>KEY-URS161</u>
Matrix: (so	il/water)	WATER		Lab Sample ID:	1303787-002A
Sample wt/v	ol: <u>5</u>	(g/ml) ML	!	Lab File ID:	13\G18095.
Level: (1	ow/med)	LOW		Date Received:	03/15/13
% Moisture:	not dec.			Date Analyzed:	03/20/13
GC Column:	Rtx-624	ID: <u>.1</u>	8 (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:	((hr)	Soil Aliquot Volu	me (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L		
71-43-2	Benzene	44		
108-88-3	Toluene	1	U	
100-41-4	Ethylbenzene	1	U	
1330-20-7	Xylene (total)	3		

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

108-88-3

100-41-4

1330-20-7

Toluene

Ethylbenzene

Xylene (total)

	7772
HIMW-12S	

Lab Name:	H2M LABS II	1C	Contr	act:		
Lab Code:	<u>H2M</u>	Case No.:	KEY-URS SAS	3 No.:	SDG No.: KEY-UR	<u> </u>
Matrix: (so	il/water)	WATER		Lab Sample ID:	1303787-003A	
Sample wt/v	ol: <u>5</u>	(g/mL)	ML	Lab File ID:	13\G18096.	
Level: (1	ow/med)	FOM		Date Received:	03/15/13	
% Moisture:	not dec.			Date Analyzed:	03/20/13	
GC Column:	Rtx-624	ID:	.18 (mm)	Dilution Factor:	1.00	
Soil Extrac	t Volume:		(pL)	Soil Aliquot Vol	me (hr)	
				CONCE	TRATION UNITS:	
CAS NO.		COMPOUND		(µg/L	or µg/Kg) UG/L	Q
5	71-43-2	Benzene			1	Ü

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13D

Lab Name: H	2M LABS IN	<u>c</u>	Contrac	ct:	
Lab Code: H	2M	Case No.:	KEY-URS SAS	No.:	SDG No.: KEY-URS161
Matrix: (soil	l/water)	WATER		Lab Sample ID:	1303644-001A
Sample wt/vol	1: <u>5</u>	(g/mL)	<u>wr</u>	Lab File ID:	13\G18082.
Level: (lov	w/med)	FOM		Date Received:	03/13/13
% Moisture: 1	not dec.			Date Analyzed:	03/20/13
GC Column:	Rtx-624	ID:	.18 (mm)	Dilution Factor:	1.00
Soil Extract	Volume		(nL)	Soil Alignot Volu	me (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(pg/L or pg/Kg) UG/L	¥	
71-43-2	Benzene	3		
108-88-3	Toluene	1	U	
100-41-4	Ethylbenzene	1	Ü	
1330-20-7	Xylene (total)	1	υ	

OLM04.2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-13I

Lab Name:	H2M LABS	INC	Contra	et:	
Lab Code:	н2м	Case No.:	KEY-URS SAS	No.:	SDG No.: KEY-URS161
Matrix: (so	il/water)	WATER		Lab Sample ID:	1303644-002A
Sample wt/v	ol: <u>5</u>	(g/mL) ML	Lab File ID:	13\G18083.
Level: (1	ow/med)	FOM		Date Received:	03/13/13
% Moisture:	not dec.			Date Analyzed:	03/20/13
GC Column:	Rtx-624	è m	: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:		(µL)	Soil Aliquot Vol	ume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q	
71-43-2	Benzene	46		
108-88-3	Toluene	1	U	
100-41-4	Ethylbenzene	3		
1330-20-7	Xylene (total)	4		

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-13S	

EPA SAMPLE NO.

Lab Name: H2M LABS	INC Co	ontract:	
Lab Code: H2M	Case No.: KEY-URS	SAS No.:	SDG No.: KEY-URS161
Matrix: (soil/water)	WATER	Lab Sample ID:	1303644-003A
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	13\G18084.
Level: (low/med)	TOM	Date Received:	03/13/13
% Moisture: not dec.		Date Analyzed:	03/20/13
GC Column: Rtx-624	ID: <u>.18</u> (n	mm) Dilution Factor:	1.00
Soil Extract Volume:	(hr)	Soil Aliquot Vol	mme(pL)
		CONCE	NTRATION UNITS:
CAS NO.	COMPOUND	(µg/L	or µg/Kg) UG/L Q
71-43-2	Benzene	The formation with the party of	1 0
108-88-3	Toluene		1 U
100-41-4	Ethylbenzene		1 0
1330-20-7	Xylene (total)	an alman a mar	1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-14D

Lab	Name:	H2M 1	LABS	INC			Contra	ct:	,		
Lab	Code:	H2M		Case	No.:	KEY-UR	<u>s</u> sas	No.:		SDG No.:	KEY-URS161
Mati	ix: (so	il/wa	ter)	WZ	TER			Lab	Sample ID:	1303644-0	04A
Samp	le wt/v	ol:	<u>5</u>		(g/mL)	ML		Lab	File ID:	13\G18087	•
Leve	:1: (1	ow/me	d)	FOM				Date	Received:	03/13/13	
% Mc	isture:	not	dec.					Date	Analyzed:	03/20/13	
GC (Column:	Rtx	-624		ID:	.18	(mm)	Dilu	tion Factor:	1.00	
Soi]	Extrac	t Vol	.ume:			(µL)		Soil	Aliquot Vol	ume	(pL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/	L Q
71-43-2	Benzene	Ţ 1	ט
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	Ü
1330-20-7	Xvlene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-14I		

	M LABS IN	C	Contra	ct:		
Lab Code: <u>H2</u>	<u>M</u>	Case No.:	KEY-URS SAS	No.:	SDG No.:	KEY-URS161
Matrix: (soil	/water)	WATER		Lab Sample ID:	1303644-00)5A
Sample wt/vol	: <u>5</u>	(g/mL)	ML	Lab File ID:	13\G18088.	<u>.</u>
Level: (low	/med)	TOM		Date Received:	03/13/13	
% Moisture: n	ot dec.			Date Analyzed:	03/20/13	
GC Column:	Rtx-624	ID:	.18 (mm)	Dilution Factor:	1.00	
Soil Extract	Volume:	-	(hr)	Soil Aliquot Volu	ıme	(pL)
				CONCEN	TRATION UN	ITS:
CAS NO.		COMPOUND		(ng/L	or ua/Ka) t	IG/L O

CAS	NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
5	71-43-2	Benzene	32	
	108-88-3	Toluene	1	Ü
	100-41-4	Ethylbenzene	2	
	1330-20-7	Xylene (total)	4	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-15D

Lab Name:	H2M LABS	INC	Contra	ct:	
Lab Code:	н2м	Case No.:	KEY-URS SAS	No.:	SDG No.: KEY-URS161
Matrix: (so	il/water)	WATER		Lab Sample ID:	1303644-006A
Sample wt/v	ol: <u>5</u>	(g/mL)	<u>ML</u>	Lab File ID:	13\G18089.
Level: (1	ow/med)	TOM		Date Received:	03/13/13
% Moisture:	not dec.			Date Analyzed:	03/20/13
GC Column:	Rtx-624	ID:	.18 (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:	340 (44a)	(hr)	Soil Aliquot Volu	me (pL)

CAS NO.	COMPOUND	(μg/L or μg/Kg) UG/L	Q
71-43-2	Benzene	1	Ü
108-88-3	Toluene	1	Ü
100-41-4	Ethylbenzene	1	ט
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-151		

Lab Name: H2	M LABS IN	C	Co	ntract:				
Lab Code: H2	<u>M</u>	Case No.:	KEY-URS	SAS No.		SDG No.:	KEY-URS1	61
Matrix: (soil	/water)	WATER		Lab	Sample ID:	1303644-0	07A	
Sample wt/vol	: <u>5</u>	(g/mL)	ML	Lab	File ID:	13\G18090	<u>.</u>	
Level: (low	/med)	TOM		Dat	e Received:	03/13/13		
% Moisture: n	ot dec.			Dat	e Analyzed:	03/20/13		
GC Column:	Rtx-624	ID:	<u>.18</u> (m	m) Dil	ution Factor:	1.00		
Soil Extract	Volume:	(100-10-10-1	(hr)	Soi	l Aliquot Vol	ume 	— (hr)	
					CONCE	NTRATION U	NITS:	
CAS NO.		COMPOUND			(pg/L	or µg/Kg)	UG/L	Q
71	-43-2 B	enzene			**************************************	12		
# 255522	5 866 Brit Darker	oluene thylbenzene	rom don			- 1 1		U U
1330)-20-7 X	ylene (tota	nl)			2		Sec. 1

OLM04.2

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-20I

Lab Name:	H2M LABS INC		Contract:	******		
Lab Code:	<u>H2M</u>	Case No.: KEY-UI	RS SAS No.		SDG No.:	KEY-URS161
Matrix: (so	il/water)	WATER	Lab	Sample ID:	1303787-00	94A
Sample wt/v	ol: <u>5</u>	(g/mL) ML	Lab	File ID:	13\G18099	<u>-</u>
Level: (1	ow/med)	FOM	Dat	e Received:	03/15/13	
% Moisture:	not dec.		Dat	e Analyzed:	03/21/13	
GC Column:	Rtx-624	ID: <u>.18</u>	(mm) Dil	ution Factor:	1.00	
Soil Extrac	t Volume:	(pr.) soi	l Aliguot Volu	me	(pr)

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/</u>	<u>'L</u> Q
71-43	-2 Benzene	1 1	T 0 1
108-88	-3 Toluene		Ü
100-41	-4 Ethylbenzene	1	Ü
1330-20	-7 Xylene (total)	6	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

DUP031513 (HIMW-20I)

Lab Name: H2M LABS	INC Contra	ct:		
Lab Code: H2M	Case No.: <u>KEY-URS</u> SAS	No.:	SDG No.: KEY-URS	161
Matrix: (soil/water)	WATER	Lab Sample ID:	1303787-007A	
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	13\G18098.	
Level: (low/med)	LOW	Date Received:	03/15/13	
% Moisture: not dec.		Date Analyzed:	03/21/13	
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume:	(ћг)	Soil Aliquot Vol	ume (µL)	
		CONCE	TRATION UNITS:	
CAS NO.	COMPOUND	(µg/L	or µg/Kg) UG/L	Q
71-43-2	Benzene	ANCIDAD NO. 10. 10. 10. 10.	i	U
108-88-3	Toluene		1	U
100-41-4	Ethylbenzene		1	U
1330-20-7	Xylene (total)			***

Ethylbenzene

Xylene (total)

100-41-4

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-20S

Lab Name: I	12M LABS I	INC	Contra	ct:		
Lab Code: H	(2M	Case No.:	KEY-URS SAS	No.:	SDG No.: KEY-U	RS161
Matrix: (soi	l/water)	WATER		Lab Sample ID:	1303787-005A	
Sample wt/vo	1: <u>5</u>	(g/mL)	ML	Lab File ID:	13\G18097.	
Level: (lo	w/med)	LOW		Date Received:	03/15/13	
% Moisture:	not dec.			Date Analyzed:	03/21/13	
GC Column:	Rtx-624	ID:	.18 (mm)	Dilution Factor:	1.00	
Soil Extract	Volume:	***************************************	(pL)	Soil Aliquot Volu	ume (pL)	
				CONCER	TRATION UNITS:	
CAS NO.		COMPOUND		(µg/L	or µg/Kg) UG/L	Q
	71-43-2	Benzene	una unitera -		1	Ü
1(08-88-3	Toluene			1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-22

Lab Name: H2M	LABS IN	<u>1C</u>	Contrac	ct:	
Lab Code: H2M	Ţ.	Case No.: E	CEY-URS SAS	No.:	SDG No.: KEY-URS161
Matrix: (soil/w	ater)	WATER		Lab Sample ID:	1303644-008A
Sample wt/vol:	<u>5</u>	(g/mL)	ML	Lab File ID:	13\G18091.
Level: (low/m	ed)	TOM		Date Received:	03/13/13
% Moisture: not	dec.			Date Analyzed:	03/20/13
GC Column: Rt	x-624	ID:	.18 (mm)	Dilution Factor:	1.00
Soil Extract Vo	lumė:		(nL)	Soil Alignot Volu	me (nt.)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/I	Q
71-43-	-2 Benzene	5	
108-88-	-3 Toluene		Ū
100-41-	-4 Ethylbenzene	1	U
1330-20-	-7 Xylene (total)	4	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-23

Lab Name: H2M LABS	INC Contra	ct:	
Lab Code: <u>H2M</u>	Case No.: <u>KEY-URS</u> SAS	No.:	SDG No.: <u>KEY-UR\$161</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	1303644-009A
Sample wt/vol: 5	(g/mL) ML	Lab File ID:	13\G18092.
Level: (low/med)	TOM	Date Received:	03/13/13
% Moisture: not dec.		Date Analyzed:	03/20/13
GC Column: Rtx-624	ID: <u>.18</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:	(µL)	Soil Aliquot Volu	ume (uL)

CAS NO.	À.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
	71-43-2	Benzene	1	U
	108-88-3	Toluene	1	U
	100-41-4	Ethylbenzene	1	Ü
	1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-24

	LABS INC		Contrac	it:	
Lab Code: H2M	c	ase No.: KEY	r-urs sas	No.:	SDG No.: KEY-URS161
Matrix: (soil/	water)	WATER		Lab Sample ID:	1303787-006A
Sample wt/vol:	<u>5</u>	(g/mL) MI	<u> </u>	Lab File ID:	13\G18100.
Level: (low/	med) <u>I</u>	LOW		Date Received:	03/15/13
% Moisture: no	t dec.			Date Analyzed:	03/21/13
GC Column: R	tx-624	ID: <u>.1</u>	L8 (mm)	Dilution Factor:	1.00
Soil Extract V	olume:		(pL)	Soil Aliquot Volu	me (hr)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	59	
108-88-3	Toluene	4	
100-41-4	Ethylbenzene	1	
1330-20-7	Xylene (total)	43	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HIMW-25

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER Lab Sample ID: 1303A09-004A

Sample wt/vol: 5 (g/mL) ML Lab File ID: 13\G18110.

Level: (low/med) LOW Date Received: 03/20/13

% Moisture: not dec. Date Analyzed: 03/21/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume: (µL) Soil Aliquot Volume (µL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1 1	U
108-88-3	Toluene	1	U
100-41-4	Ethylbenzene	1	Ü
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB031513

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID: 1303787-008A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13}$ \G18093.

Level: (low/med) LOW

Date Received: 03/15/13

% Moisture: not dec.

Date Analyzed: 03/20/13

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(μL) Soil Aliquot Volume (μL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(µg/L or µg/Kg) UG/L Q

71-43-2	Benzene	1	"ט
108-88-3	Toluene	1	Ü
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TB031913

Lab Name:	H2M LABS I	NC	Contra	ct:	
Lab Code:	н2м	Case No.:	KEY-URS SAS	No.:	SDG No.: KEY-URS162
Matrix: (so	il/water)	WATER		Lab Sample ID:	1303924-008A
Sample wt/v	ol: <u>5</u>	(g/mL)	ML	Lab File ID:	13\G18118.
Level: (1	ow/med)	TOM		Date Received:	03/19/13
% Moisture:	not dec.			Date Analyzed:	03/21/13
GC Column:	Rtx-624	ID:	.18 (mm)	Dilution Factor:	1.00
Soil Extrac	t Volume:	-	(pL)	Soil Aliquot Volu	me(μL)

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L Q	
71-43-2	Benzene	i i u	1
108-88-3	Toluene	1 U	7
100-41-4	Ethylbenzene	1 "	i
1330-20-7	Xylene (total)	1 Ü	Ť.

EPA SAMPLE NO.

FB032013

Lab Name: H2M 1	LABS INC	* C	ontract:			
Lab Code: H2M	Case No.	: KEY-URS	SAS No.:		SDG No.:	KEY-URS161
Matrix: (soil/wa	ter) WATER		Lab	Sample ID:	1303A09-0	05A
Sample wt/vol:	<u>5</u> (g/	ml) ML	Lab	File ID:	13\G18108	•
Level: (low/me	ed) <u>LOW</u>		Date	Received:	03/20/13	
% Moisture: not	dec.		Date	Analyzed:	03/21/13	
GC Column: Rtx	z-62 4	ID: <u>.18</u> (n	nm) Dilu	tion Factor:	1.00	
Soil Extract Vol	iume:	(hr)	Soil	Aliquot Vol	iwe	— ^(pL)
				CONCEN	TRATION UN	IITS:
CAS NO.	COMPOUN	D		(µg/L	or µg/Kg)	UG/L Q
71-4	3-2 Benzene		**************	· ····································	i	U
108-8	8-3 Toluene				1	ט
100-4	1-4 Ethylben:	ene	= 25 8 8		1	ט
1330-2	0-7 Xylene (1	otal)	4.144.6	12 13	.1	i o

EPA SAMPLE NO.

TB 032013

Lab Name: H2M LABS INC Contract: Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161 Matrix: (soil/water) WATER Lab Sample ID: 1303A09-006A Sample wt/vol: $\underline{5}$ (g/mL) \underline{ML} Lab File ID: $\underline{13\backslash G18107}$. Level: (low/med) LOW Date Received: 03/20/13 Date Analyzed: 03/21/13 % Moisture: not dec.

GC Column: Rtx-624 ID: .18 (mm) Dilution Factor: 1.00

Soil Extract Volume:

(μL) Soil Aliquot Volume (μL)

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
71-43-2	Benzene	1	U
108-88-3	Toluene	1	บ
100-41-4	Ethylbenzene	1	U
1330-20-7	Xylene (total)	1	Ü

HIMW-03D

Lab Name: H2M LABS INC	Contract:
------------------------	-----------

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS162

Matrix: (soil/water) WATER Lab Sample ID: 1303924-001B

Sample wt/vol: $\underline{1000}$ (g/mL) $\underline{m1}$ Lab File ID: $\underline{3}$ R14832.D

Level: (low/med) LOW Date Received: 03/19/13

% Moisture: Decanted: (Y/N) N Date Extracted: 03/20/13

Concentrated Extract Volume: $\underline{1000}$ (μ L) Date Analyzed: $\underline{03/22/13}$

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q	
91-20-3	Naphthalene	10	U	
91-57-6	2-Methylnaphthalene	10	U	
208-96-8	Acenaphthylene	10	Ü	
83-32-9	Acenaphthene	10	U	
86-73-7	Fluorene	10	U	
85-01-8	Phenanthrene	10	U	
120-12-7	Anthracene	10	U	
206-44-0	Fluoranthene	10	U	
129-00-0	Pyrene	10	U	
56-55-3	Benzo(a)anthracene	10	U	
218-01-9	Chrysene	10	U	
205-99-2	Benzo(b) fluoranthene	10	U	
207-08-9	Benzo(k)fluoranthene	10	U	
50-32-8	Benzo(a)pyrene	10	U	
193-39-5	Indeno(1,2,3-cd)pyrene	10	U	
53-70-3	Dibenzo(a,h)anthracene	10	U	
191-24-2	Benzo(g,h,i)perylene	10	Ū	

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-03I

Lab Name: H2M LABS INC	Contract:
------------------------	-----------

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS162

Matrix: (soil/water) WATER Lab Sample ID: 1303924-002B

Sample wt/vol: $\underline{1000}$ (g/mL) $\underline{m1}$ Lab File ID: $\underline{3}$ R14833.D

Level: (low/med) LOW Date Received: 03/19/13

% Moisture: Decanted: (Y/N) N Date Extracted: 03/20/13

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{03/22/13}$

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	$(\mu g/L \text{ or } \mu g/Kg) \underline{UG/L}$	Q	
91-20-3	Naphthalene	10	U	
91-57-6	2-Methylnaphthalene	10	U	
208-96-8	Acenaphthylene	10	Ŭ	
83-32-9	Acenaphthene	10	U	
86-73-7	Fluorene	10	U	
85-01-8	Phenanthrene	10	U	
120-12-7	Anthracene	10	U	
206-44-0	Fluoranthene	10	Ü	
129-00-0	Pyrene	10	U	
56-55-3	Benzo(a)anthracene	10	U	
218-01-9	Chrysene	10	U	
205-99-2	Benzo(b) fluoranthene	10	υ	
207-08-9	Benzo(k) fluoranthene	10	U	
50-32-8	Benzo(a)pyrene	10	U	
193-39-5	Indeno(1,2,3-cd)pyrene	10	U	
53-70-3	Dibenzo(a,h)anthracene	10	U	
191-24-2	Benzo(g,h,i)perylene	10	U	

⁽¹⁾ Cannot be separated from Diphenylamine

EPA SAMPLE NO.

HIMW-03S

Lab	Name:	H2M LABS II	NC		Cont	ract:		
Lab	Code:	<u>Н2М</u>	Case	No.;	KEY-URS	SAS No.:	SDG No.:	KEY-URS162

Matrix: (soil/water) WATER Lab Sample ID: 1303924-003B

Sample wt/vol: $\underline{1000}$ (g/mL) $\underline{\underline{ml}}$ Lab File ID: $\underline{\underline{3}R14834.D}$

Level: (low/med) LOW Date Received: 03/19/13

% Moisture: Decanted: (Y/N) Date Extracted: 03/20/13

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{03/22/13}$

GPC Cleanup: (Y/N) N pH: ___ Extraction: (Type) CONT

CONCENTRATION UNITS:

Dilution Factor: 1.00

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	$(\mu g/L \text{ or } \mu g/Kg) \underline{UG/L}$	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	Ü
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ü
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	ΰ
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	υ
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

Injection Volume: $\underline{2}$ (μ L)

EPA SAMPLE NO.

HIMW-05D

Contract: Lab Name: H2M LABS INC

Lab Code: H2M Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS162

Matrix: (soil/water) WATER

Lab Sample ID:

1303924-004B

Sample wt/vol:

1000

Lab File ID:

3\R14835.D

Level: (low/med)

Date Received: 03/19/13

% Moisture:

Decanted: (Y/N)

LOW

N Date Extracted: 03/20/13

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{03/22/13}$

Injection Volume: $\underline{2}$ (μ L)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

(g/mL) <u>ml</u>

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(μg/L or μg/Kg) UG/L Q

91-20-3	Naphthalene	8CC 680	ED
91-57-6	2-Methylnaphthalene	69	
208-96-8	Acenaphthylene	27	
83-32-9	Acenaphthene	1	J
86-73-7	Fluorene	3	J
85-01-8	Phenanthrene	10	Ŭ
120-12-7	Anthracene	10	ש
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

HIMW-05DDL

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: _____

No.: SDG No.: KEY-URS162

Matrix: (soil/water) WATER Lab Sample ID: 1303924-004BDL

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 3\R14852.D

Level: (low/med) LOW Date Received: 03/19/13

% Moisture: Decanted: (Y/N) N Date Extracted: 03/20/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 03/22/13

Injection Volume: $\underline{2}$ (μL) Dilution Factor: 20.00

GPC Cleanup: (Y/N) N pH: Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	-	μg/L or μg/Kg) U	3/L Q
91-20-3	Naphthalene		800	D
91-57-6	2-Methylnaphthalene		74	DJ
208-96-8	Acenaphthylene \		28	DJ
83-32-9	Acenaphthene		200	U
86-73-7	Fluorene	/	200	U
85-01-8	Phenanthrene	\	200	ט
120-12-7	Anthracene	1	200	ט
206-44-0	Fluoranthene		200	Ŭ
129-00-0	Pyrene		200	U
56-55-3	Benzo(a)anthracene		200	U
218-01-9	Chrysene		200	U
205-99-2	Benzo(b) fluoranthen	e /	200	Ū
207-08-9	Benzo(k)fluoranthen	e X	200	U
50-32-8	Benzo(a)pyrene	Benzo(a)pyrene		
193-39-5	Indeno(1,2,3-cd)pyr	ene /	200	U
53-70-3	Dibenzo(a,h)anthrac	ene	200	ט
191-24-2	Benzo(g,h,i)perylen	e	200	U

(1) Cannot be separated from Diphenylamine

4/19/13

EPA SAMPLE NO.

HIMW-05I

Contract: ____ Lab Name: H2M LABS INC

Lab Code: H2M Case No.: KEY-URS SAS No.:

1000

SDG No.: KEY-URS162

Matrix: (soil/water) WATER

Lab Sample ID:

Sample wt/vol:

(g/mL) ml

Lab File ID:

1303924-005B 3\R14836.D

Level: (low/med)

LOW

Date Received: 03/19/13

% Moisture:

 \underline{N} Date Extracted: $\underline{03/20/13}$

Decanted: (Y/N)

Date Analyzed:

03/22/13

Concentrated Extract Volume: 1000 (μ L)

Injection Volume:

<u>2</u> (μL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: ____

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.

COMPOUND

 $(\mu g/L \text{ or } \mu g/Kg) UG$

3/L	Q
-----	---

91-20-3	Naphthalene	1800 1400	E-D
91-57-6	2-Methylnaphthalene	270 240	ED
208-96-8	Acenaphthylene	160 140	ED.
83-32-9	Acenaphthene	10	
86-73-7	Fluorene	19	
85-01-8	Phenanthrene	11	
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	υ
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	υ
218-01-9	Chrysene	10	Ü
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	υ
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

(1) Cannot be separated from Diphenylamine

HIMW-05IDL

Lab Name:	H2M LABS INC	Contract:
		Constant Control of the Property of the Proper

Lab Code: H2M Case No.: KEY-URS SAS No.: ____

KEY-URS SAS No.: SDG No.: KEY-URS162

Matrix: (soil/water) WATER Lab Sample ID: 1303924-005BDL

Sample wt/vol: 1000 (g/mL) ML Lab File ID: $3\R14853.D$

Level: (low/med) LOW Date Received: 03/19/13

% Moisture: Decanted: (Y/N) N Date Extracted: 03/20/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 03/22/13

Injection Volume: 2 (µL) Dilution Factor: 50.00

GPC Cleanup: (Y/N) N pH: Extraction: (Type) CONT

CONCENTRATION UNITS:

			0011021112111011 01111	₽.
CAS NO.	COMPOUND		(μg/L or μg/Kg) UG	/L Q
91-20-3	Naphthalene		1800	q
91-57-6	2-Methylnapht	halene	270	DJ
208-96-8	Acenaphthylen	.e	160	DJ
83-32-9	Acenaphthene		500	U
86-73-7	Fluorene		500	Ü
85-01-8	Phenanthrene		500	Ū
120-12-	Anthracene	/	500	U
206-44-0	Fluoranthene		500	U
129-00-0	Pyrene		500	U
56-55-3	Benzo(a)anthr	acene	500	U
218-01-9	Chrysene		500	U
205-99-2	Benzo(b)fluor	anthene	500	U
207-08-9	Benzo(k)fluor	anthène	500	Ū
50-32-8	Benzo(a)pyren	ie /	500	U
193-39-5	Indeno(1,2,3-	cd) pyrehe	500	U
53-70-3			500	U
191-24-2	Benzo(g,h,i)p	erylene	500	U

(1) Cannot be separated from Diphenylamine

4/14/13

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

DU	P031913
4	(HIMW-05 F)

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS162

Matrix: (soil/water) WATER Lab Sample ID: 1303924-007B

Lab File ID: 3\R14838.D Sample wt/vol: 1000 (g/mL) ml

Level: (low/med) Date Received: 03/19/13 LOW

% Moisture: Decanted: (Y/N) N Date Extracted: 03/20/13

Concentrated Extract Volume: $\underline{1000}$ (μ L) Date Analyzed: $\underline{03/22/13}$

Injection Volume: 2 (μ L) Dilution Factor: 1.00

Extraction: (Type) CONT GPC Cleanup: (Y/N) N pH: ____

CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L \underline{Q}
		(ha) ha)a) <u>a/-</u>

CAS NO.	COMPOUND	(μg/μ or μg/kg) <u>υσ/μ</u>	Q
91-20-3	Naphthalene	16CV 1300	ED
91-57-6	2-Methylnaphthalene	260 230	EDI
208-96-8	Acenaphthylene	140 130	EDJ
83-32-9	Acenaphthene	10	
86-73-7	Fluorene	19	
85-01-8	Phenanthrene	11	
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	υ
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	ש
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

EPA SAMPLE NO.

DUP031913DL (HIMW-05I

Lab Name: H2M LABS INC

Contract:

Lab Code: H2M

SAS No.: _ Case No.: KEY-URS

SDG No.: KEY-URS162

Matrix: (soil/water) WATER

Lab Sample ID:

1303924-007BDL

Sample wt/vol:

(g/mL) ML Lab File ID:

3\R14854.D

Level:

(low/med)

91-20-3

91-57-6

83-32-9

86-73-7

85-01-8

120-12-7

206-44-0

129-00-0

56-55-3

218-01-9

205-99-2

207-08-9

50-32-8

193-39-5

53-70-3

191-24-2

208-96-8

LOW

Date Received:

03/19/13

% Moisture:

Decanted: (Y/N)

Date Extracted: Date Analyzed:

03/20/13

Concentrated Extract Volume: 1000 (μL)

03/22/13

Injection Volume:

(µL) 2

Dilution Factor: 50.00

GPC Cleanup: (Y/N) N

pH: ___

Extraction: (Type) CONT

CONCENTRATION UNITS:

777	NIC

COMPOUND Naphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Fluoranthene

Benzo(a)anthracene

Benzo(b) fluoranthene

Benzo(k) fluoranthene

Indeno(1,2,3-cd) pyrene

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

Benzo(a)pyrene

Anthracene

Fluorene

Pyrene

Chrysene

2-Methylnaphthalene

 $(\mu g/L \text{ or } \mu g/Kg) \text{ UG/L}$

	1600	D
	260	DJ
	140	DJ
	500	U
_	500	Ŭ
	500	, U
	500	<u></u> ד
	500	ט
	500	U
	500	U
	500	υ
	500	Ū
	500	U
	500	υ

500

500

500

(1) Cannot be separated from Diphenylamine

U

IJ

U

HIMW-05S

Lab Name: H2M LABS INC Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.:

1000

SDG No.: KEY-URS162

Matrix: (soil/water) WATER

Lab Sample ID:

(g/mL) ml

Lab File ID:

1303924-006B 3\R14837.D

Sample wt/vol:

Level: (low/med) LOW Date Received: 03/19/13

% Moisture:

Decanted: (Y/N) N Date Extracted: 03/20/13

Concentrated Extract Volume: $\underline{1000}$ (μL) Date Analyzed: $\underline{03/22/13}$

Injection Volume: $\underline{2}$ (μ L)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO. COMPOUND

 $(\mu g/L \text{ or } \mu g/Kg) \text{ } \underline{UG/L} \text{ } Q$

		17-57 = 0= 7-57 0-57 <u>0-07 =</u>	*
91-20-3	Naphthalene	1	J
91-57-6	2-Methylnaphthalene	10	Ŭ
208-96-8	Acenaphthylene	10	Ú
83-32-9	Acenaphthene	10	Ū
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	υ
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-08I

Lab Name:	H2M LABS INC	Contract:	

Lab Code: H2M Case No.: KEY-URS SAS No.: _____

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303A09-002B

Sample wt/vol:

1000

ml

Lab File ID:

(low/med)

(g/mL)

3\N56921.D

Level:

LOW

Date Received:

03/20/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

03/21/13

Concentrated Extract Volume:

1000 (µL) Date Analyzed:

03/25/13

Injection Volume:

(µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N -

pH:

Extraction: (Type) CONT

CONCENTRATION UNITS:

10

CAS NO.	COMPOUND	($\mu g/L$ or $\mu g/Kg$) UG/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	Ū
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	Ū
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

191-24-2 Benzo(g,h,i)perylene

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-08S

Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER Lab Sample ID: 1303A09-003B

Sample wt/vol: $\underline{1000}$ (g/mL) \underline{ml} Lab File ID: $\underline{3}$ \N56922.D

Level: (low/med) LOW Date Received: 03/20/13

% Moisture: Decanted: (Y/N) N Date Extracted: 03/21/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 03/25/13

Injection Volume: 2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

		CONCENTION ONLID.	
CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	2	J
83-32-9	Acenaphthene	10	U
86~73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	ָד ט
207-08-9	Benzo(k) fluoranthene	10	υl
50-32-8	Benzo(a)pyrene	10	ט
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3		10	U
191-24-2	Benzo(g,h,i)perylene	10	υψ

(1) Cannot be separated from Diphenylamine

HIMW-08SRE

Lab	Name:	H2M LABS INC	Contract:

Lab Code: H2M

SAS No.: _____ Case No.: KEY-URS

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303A09-003BRE

Sample wt/vol:

1000

ml

Lab File ID:

3\N56941.D

Level: (low/med)

Date Received:

03/20/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

03/21/13

Concentrated Extract Volume:

1000 (µL)

Date Analyzed:

03/26/13

Injection Volume:

(µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N

pH:

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(µg/L or µg/Kg) UG/L

91-20-3	Naphthalene		10	U
91-57-6	2-Methylnaphth	alene	10	U
208-96-8	Acenaphthylene		2	J
83-32-9	Acenaphthene \	VII.	10	U
86-73-7	Fluorene		10	U
85-01-8	Phenanthrene		10	U
120-12-7	Anthracene	\	1	J
206-44-0	Fluoranthene		10	U
129-00-0	Pyrene		10	U
56-55-3	Benzo(a)anthra	cene	10	U
218-01-9	Chrysene		10	U
205-99-2	Benzo(b)fluora	nthene	10	U
207-08-9	Benzo(k)fluora	nthene	10	U
50-32-8	Benzo(a)pyrene		10	Ū
193-39-5	Indeno(1,2,3-c	d) pyrené	10	U
53-70-3	Dibenzo(a,h)an	thracene	10	U
191-24-2	Benzo(g,h,i)pe	rylene	10	U

(1) Cannot be separated from Diphenylamine

EPA SAMPLE NO.

HIMW-12D

Lab Name:	H2M LABS INC	Contract:

SAS No.: _____ Lab Code: H2M Case No.: KEY-URS

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303787-001B

Sample wt/vol:

1000

(g/mL) ml Lab File ID: 3\N56832.D

LOW

Date Received:

03/15/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

03/18/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

03/19/13

Injection Volume: $\underline{2}$ (μ L)

Level: (low/med)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CAS	NO.	COMPOUND

(µg/L	or	μg/Kg)	UG/L	Q
-------	----	--------	------	---

		(F3) = 0= F3(-3) <u>0-7=</u>	-
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

EPA SAMPLE NO.

HIMW-12I

Contract: Lab Name: H2M LABS INC

Lab Code: H2M

SAS No.: _____ Case No.: KEY-URS

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303787-002B

Sample wt/vol:

1000

(g/mL) ml Lab File ID: 3\N56833.D

Level: (low/med)

LOM

Date Received: 03/15/13

% Moisture:

Decanted: (Y/N)

Date Extracted: 03/18/13 N

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

03/19/13

Injection Volume:

2 (µL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	3	J
91-57-6	2-Methylnaphthalene	1	J
208-96-8	Acenaphthylene	35	
83-32-9	Acenaphthene	36	
86-73-7	Fluorene	23	
85-01-8	Phenanthrene	10	
120-12-7	Anthracene	1	J
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-12S

Lab	Name:	H2M LABS INC	Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER Lab Sample ID: 1303787-003B

Sample wt/vol: 1000 (g/mL) <u>ml</u> Lab File ID: 3\N56834.D

Level: (low/med) LOW Date Received: 03/15/13

% Moisture: Decanted: (Y/N) Date Extracted: 03/18/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 03/19/13

Injection Volume: 2 (pL) Dilution Factor: 1.00

Extraction: (Type) CONT GPC Cleanup: (Y/N) N pH: ____

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

HIMW-13D

Lab Nar	ne: H2M	LABS	INC	Contract:	

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303644-001B

Sample wt/vol:

(g/mL)

1000

2

Lab File ID: ml

3\N56795.D

(low/med) Level:

LOW

Date Received:

03/13/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

03/14/13

Concentrated Extract Volume:

1000 (µL)

Date Analyzed:

03/18/13

Injection Volume:

(µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) N

pH: __

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	Ū.
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	6	J
83-32-9	Acenaphthene	3	J
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo (a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

191-24-2 Benzo(g,h,i)perylene

HIMW-13I	
1111111 101	

Lab	Name:	H2M	LABS	INC	

Contract: __

Lab Code: H2M

Case No.: KEY-URS

SAS No.:

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303644-002B

Sample wt/vol:

1000

(g/mL) <u>ml</u>

Lab File ID:

3\N56796.D

Level: (low/med)

Date Received:

03/13/13

% Moisture:

Decanted: (Y/N)

LOW

Date Extracted:

03/14/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

03/18/13

Injection Volume: 2 (µL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

		OCCUPATION ON A PARTY OF THE PA	
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	3	J
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	7	J
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	1	J
85-01-8	Phenanthrene	2	J
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0 Pyrene		10	U
56-55-3 Benzo(a)anthracene		10	U
218-01-9	Chrysene	10	U
205-99-2 Benzo(b) fluoranthene		10	U
207-08-9	Benzo(k) fluoranthene	10	Ü
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-13S

Lab Name: H2M LABS I	Cont	ract:	
Lab Code: H2M	Case No.: KEY-URS	SAS No.:	SDG No.: KEY-URS161
Matrix: (soil/water)	WATER	Lab Sample ID:	1303644-003B
Sample wt/vol:	1000 (g/mL) <u>ml</u>	Lab File ID:	3\N56797.D
Level: (low/med)	TOM	Date Received:	03/13/13
% Moisture:	Decanted: (Y/N) \underline{N}	Date Extracted:	03/14/13
Concentrated Extract	Volume: <u>1000</u> (μL)	Date Analyzed:	03/18/13
Injection Volume:	<u>2</u> (µL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (Type)	CONT

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	Ū
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	TI.
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a) pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	-
191-24-2	Benzo(g,h,i)perylene	10	<u>U</u>

(1) Cannot be separated from Diphenylamine

HIMW-14D	

Lab Name: H2M LABS 1	INC Cont	ract:	
Lab Code: H2M	Case No.: KEY-URS	SAS No.:	SDG No.: KEY-URS161
Matrix: (soil/water)	WATER	Lab Sample ID:	1303644-004B
Sample wt/vol:	1000 (g/mL) <u>ml</u>	Lab File ID:	3\N56824.D
Level: (low/med)	LOW	Date Received:	03/13/13
% Moisture:	Decanted: (Y/N) N	Date Extracted:	03/14/13
Concentrated Extract	Volume: 1000 (µL)	Date Analyzed:	03/19/13
Injection Volume:	<u>2</u> (µL)	Dilution Factor:	1.00
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (Type)	CONT

CONCENTRATION UNITS:

		CONCENTION ONLID.	
CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	10	Ū
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3 Benzo(a)anthracene		10	Ü
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ü

(1) Cannot be separated from Diphenylamine

HIMW-14I

Lab	Name:	H2M LABS INC	Contract:

Case No.: KEY-URS SAS No.: Lab Code: H2M

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

Sample wt/vol:

1303644-005B

1000

m1 (g/mL)

Lab File ID:

3\N56825.D

Level: (low/med)

LOW

Decanted: (Y/N)

Date Received:

03/13/13

% Moisture:

Date Extracted:

03/14/13

Concentrated Extract Volume:

1000 (µL)

Date Analyzed:

03/19/13

Injection Volume:

(µL)

Dilution Factor:

1.00

GPC Cleanup: (Y/N) M

pH: ____

Extraction: (Type) CONT

		CONCENTRATION UNITS:	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q	
91-20-3	Naphthalene	10	U	
91-57-6	2-Methylnaphthalene	10	U	
208-96-8	Acenaphthylene	19		
83-32-9	Acenaphthene	15		
86-73-7	Fluorene	5	J	
85-01-8	Phenanthrene	4	J	
120-12-7	Anthracene	10	U	
206-44-0	Fluoranthene	10	U	
129-00-0	Pyrene	10	U	
56-55-3	Benzo (a) anthracene	10	Ū	
218-01-9	Chrysene	10	Ū	
205-99-2	Benzo(b) fluoranthene	10	U	
207-08-9	Benzo(k) fluoranthene	10	U	
50-32-8	Benzo(a)pyrene	10	U	
193-39-5	Indeno(1,2,3-cd)pyrene	10	U	
53-70-3	Dibenzo(a,h)anthracene	10	U	
191-24-2	Benzo(g,h,i)perylene	10	U	

⁽¹⁾ Cannot be separated from Diphenylamine

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

HIMW-15D

Lab Nam	e: H2M LABS INC	1	Contra	ct:		
Lab Cod	e: <u>H2M</u>	Case No.:	KEY-URS SA	AS No.:	SDG No.:	KEY-URS161

Matrix: (soil/water) WATER Lab Sample ID: 1303644-006B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 3\N56826.D

Level: (low/med) LOW Date Received: 03/13/13

% Moisture: Decanted: (Y/N) N Date Extracted: 03/14/13

Concentrated Extract Volume: 1000 (pL) Date Analyzed: 03/19/13

Injection Volume: $\underline{2}$ (μL) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

		CONCENTRATION UNITS:	CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q		
91-20-3	Naphthalene	10	U		
91-57-6	2-Methylnaphthalene	10	U		
208-96-8	Acenaphthylene	10	U		
83-32-9	Acenaphthene	10	U		
86-73-7	Fluorene	10	U		
85-01-8	Phenanthrene	10	U		
120-12-7	Anthracene	10	U		
206-44-0	Fluoranthene	10	U		
129-00-0	Pyrene	10	U		
56-55-3	Benzo(a)anthracene	10	U		
218-01-9	Chrysene	10	U		
205-99-2	Benzo(b) fluoranthene	10	U		
207-08-9	Benzo(k) fluoranthene	10	Ū		
50-32-8	Benzo(a)pyrene	10	U		
193-39-5	Indeno(1,2,3-cd)pyrene	10	U		
53-70-3	Dibenzo(a,h)anthracene	10	U		
191-24-2	Benzo(g,h,i)perylene	10	U		

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-15I

Lab Name: H2M LABS INC Contract:

Lab Code: H2M

Case No.: KEY-URS SAS No.:

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303644-007B

Sample wt/vol:

1000

2

(g/mL) ml

Lab File ID:

3\N56827.D

Level: (low/med)

LOW

Date Received:

03/13/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

03/14/13

Concentrated Extract Volume:

1000 (µL)

Date Analyzed:

03/19/13

Injection Volume:

(µL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N

рн: __

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAC	MO
	TAO -

COMPOUND

(µg/L	or	μg/Kg)	UG/L	Q
-------	----	--------	------	---

		(F3) = 0= F3) -3/ <u>00/ =</u>	142
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	13	
83-32-9	Acenaphthene	4	J
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	2	J
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	1.0	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-22

Contract: Lab Name: H2M LABS INC

Lab Code: H2M Case No.: KEY-URS

SAS No.: _____

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303644-008B

Sample wt/vol:

1000

ml(g/mL)

Lab File ID:

3\N56828.D

Level: (low/med)

LOW

Date Received:

03/13/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

03/14/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

03/19/13

Injection Volume: $\underline{2}$ (μL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	15	
83-32-9	Acenaphthene	2	J
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	υ
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-23

Contract:

Lab Code: H2M

Case No.: KEY-URS

SAS No.: _____

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303644-009B

Sample wt/vol:

1000

(g/mL) ml

Lab File ID:

3\N56829.D

Level: (low/med)

LOW

Date Received:

03/13/13

% Moisture:

Date Extracted:

Decanted: (Y/N)

03/14/13 03/19/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

Injection Volume:

<u>2</u> (μL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAC	MO
CAS	NO.

COMPOUND

(µg/L	or	µg/Kg)	UG/L	Q
-------	----	--------	------	---

		(F3) = 0 = F3/ (13) = 0/ =	146
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	Ū
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-20I

Lab	Name ·	H2M LABS INC	Contract:
nan	Manie:	NAM THES THE	Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER Lab Sample ID: 1303787-004B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 3\N56835.D

Level: (low/med) \underline{LOW} Date Received: $\underline{03/15/13}$

% Moisture: Decanted: (Y/N) N Date Extracted: 03/18/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 03/19/13

Injection Volume: $\underline{2}$ (μ L) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(µg/L or µg/Kg) <u>UG/L</u>	Q	
91-20-3	Naphthalene	3	J	
91-57-6	2-Methylnaphthalene	2	J	
208-96-8	Acenaphthylene	3	J	
83-32-9	Acenaphthene	10	U	
86-73-7	Fluorene	1	J	
85-01-8	Phenanthrene	10	U	
120-12-7	Anthracene	10	U	
206-44-0	Fluoranthene	10	Ü	
129-00-0	Pyrene	10	Ū	
56-55-3	Benzo(a) anthracene	10	U	
218-01-9	Chrysene	10	U	
205-99-2	Benzo(b) fluoranthene	10	U	
207-08-9	Benzo(k) fluoranthene	10	U	
50-32-8	Benzo(a) pyrene	10	U	
193-39-5	Indeno(1,2,3-cd)pyrene	10	U	
53-70-3	Dibenzo(a,h)anthracene	10	U	
191-24-2	Benzo(g,h,i)perylene	10	U	

⁽¹⁾ Cannot be separated from Diphenylamine

pH:

DUP0319	513	
,	mw-	107
(1+	ט שוון	W.F.

Lab Name: H2M LABS	INC	Contract		(HIIIW " XULL)
Lab Code: H2M	Case No.: KEY-	URS SAS	No.:	SDG No.: KEY-URS161
Matrix: (soil/water)	WATER		Lab Sample ID:	1303787-007B
Sample wt/vol:	1000 (g/mL)	ml	Lab File ID:	3\N56838.D
Level: (low/med)	TOM		Date Received:	03/15/13
% Moisture:	Decanted: (Y/N)	N	Date Extracted:	03/18/13
Concentrated Extract	Volume: 1000	(րբ)	Date Analyzed:	03/20/13
Injection Volume:	<u>2</u> (µL)		Dilution Factor:	1.00

CONCENTRATION UNITS:

Extraction: (Type) CONT

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) <u>UG/L</u>	Q
91-20-3	Naphthalene	2	J
91-57-6	2-Methylnaphthalene	2	J
208-96-8	Acenaphthylene	3	J
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	1	J
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	Ų
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

(Y/N) <u>N</u>

GPC Cleanup:

HIMW-20S

Lab Name: H2M LABS INC Contract:

Lab Code: H2M

Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303787-005B

Sample wt/vol:

Level: (low/med)

(g/mL) <u>ml</u>

Lab File ID:

3\N56836.D

1000

LOW

Date Received:

03/15/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

03/18/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

03/20/13

Injection Volume: 2 (µL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS NO.	CAS	NO.
---------	-----	-----

COMPOUND

(µg/L c	or µg/	Kg) U	G/L (Q
---------	--------	-------	-------	---

		(1-2) = 1-31 31 1-1-	-
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

HIMW-24

Lab Name:	H2M LABS INC	Contract:

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER Lab Sample ID: 1303787-006B

Sample wt/vol: 1000 (g/mL) Lab File ID: ml3\N56837.D

Level: (low/med) LOW Date Received: 03/15/13

% Moisture: Decanted: (Y/N) Date Extracted: 03/18/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 03/20/13

Injection Volume: 2 (µL) Dilution Factor: 1.00

Extraction: (Type) CONT GPC Cleanup: (Y/N) N pH: _

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(µg/L or µg/Kg) UG/L	Q
91-20-3	Naphthalene	67	
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	3	J
83-32-9	Acenaphthene	10	Ü
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	4	J
120-12-7	Anthracene	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

HIMW-25	

Lab 1	Name:	H2M LABS IN	Contract:	

Lab Code: H2M Case No.: KEY-URS SAS No.: SDG No.: KEY-URS161

Matrix: (soil/water) WATER Lab Sample ID: 1303A09-004B

Sample wt/vol: 1000 (g/mL) ml Lab File ID: 3\N56923.D

Level: (low/med) <u>LOW</u> Date Received: <u>03/20/13</u>

% Moisture: Decanted: (Y/N) N Date Extracted: 03/21/13

Concentrated Extract Volume: 1000 (µL) Date Analyzed: 03/25/13

Injection Volume: $\underline{2}$ (μ L) Dilution Factor: $\underline{1.00}$

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS:

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(μ g/L or μ g/Kg) \underline{U} G/L	Q
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	σ
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	· U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) Cannot be separated from Diphenylamine

FB032013

Lab	Name:	ИСН	P.A.T.	TNC
шш	name.	11211	כממב	TIME

Contract: =

Lab Code: H2M

Case No.: KEY-URS

SAS No.: _____

SDG No.: KEY-URS161

Matrix: (soil/water) WATER

Lab Sample ID:

1303A09-005B

Sample wt/vol:

(g/mL) ml

Lab File ID:

3\N56924.D

Date Received:

Level: (low/med)

LOW

03/20/13

% Moisture:

Decanted: (Y/N)

Date Extracted:

03/21/13

Concentrated Extract Volume: 1000 (µL)

Date Analyzed:

03/25/13

Injection Volume: $\underline{2}$ (µL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: ____

Extraction: (Type) CONT

CONCENTRATION UNITS:

CAS	NO	

COMPOUND

(µg/L	or	μg/	Kg)	UG/L	
-------	----	-----	-----	------	--

		(P3/1 Or P3/14) 00/11	~
91-20-3	Naphthalene	10	U
91-57-6	2-Methylnaphthalene	10	U
208-96-8	Acenaphthylene	10	U
83-32-9	Acenaphthene	10	U
86-73-7	Fluorene	10	U
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
56-55-3	Benzo(a) anthracene	10	Ū
218-01-9	Chrysene	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

⁽¹⁾ Cannot be separated from Diphenylamine

ATTACHMENT B SUPPORT DOCUMENTATION

HZM LABS, INC.

42545 EXTERNAL CHAIN OF CUSTODY

575 Broad Hollow Rd, Melville, NY 11747-5076

Tel: (631) 694-3040 Fax: (631) 420-8436

Refer Fairbanks (716) 856-3656 HZM SDG NO:松子小名 1/6 REMARKS: Project Confact hone Number: Shipped or Hand Delivered A
 Ambient or chilled, Temp
 Received in good condition: Yor N PIS/Quote # 3 É LABORATORY USE ONLY 4.08 800 Ban 3.4% 28 LAB I.D. NO. Discrepancies Between COC Record? Yor N NOTES: Sample Labels and arper at m CM Metal ANALYSIS REQUESTED 3 Sate 285 ORGANIC 48 AN8 CLIENT: AOV Description 4 7 Sample Container Total No. of Received by: (Signature) SAMPLERS: (signature)/Client

Mysan Dazid: /URS Megan Dazid: MS/MSI PROJECT NAMENUMBER 113/13/14/10 FIELD I.D. HMW-1470 HI MW-15I 11176098, 00004 IT / - MWIH #1MW-135 HMW-13D MW-157 FAW-13H HIMW-23 8/13/13 エーダマ・アイ NW-I ハイなれ DATE | TIME |MATRIX 8/4/3/1330 GW 12/205/6W 3 M3 5/4/2/ 11453 CW 113/13/13/13/15 W TURNAROUND TIME: 13/13/08/20/CW DELIVERABLES 3/13/13/0920 900 13/2/1125

YELLOW COPY - CLIENT

PINK COPY - I ARCHATCHY

3. COC record present & complete upon sample receipt:

Y o'N

2. Unbroken on outer package; Yor N

TITLE

Date

Received by: (Signature)

TIME

Date

Relinquished by. (Signature)

Present on outer package: Y or N

4. Property preserved: Y or N

Explain:

Received by: (Signature)

ime i

WHATEYCEEPS1 CHREINAL

HZM LABS, INC. 575 Broad Hollow Rd, Melville, NY 11747-5076

42546 EXTERNAL CHAIN OF CUSTODY

HZM SDG NO: Very July 17	NOTES: Project Contact: Post Fairbanks	FC PA 122076478	Free Cl2 strips(041912C)Present/Absent		INORG.	Metal CZ LAB I.D. NO. REMARKS:	112037875 WK	大の、「一	500	100 - militaria munitir (2. x. 3.	970	[ලින -	200-	100- 4		Discrepancies Returned Samples were:	Labels and cord? Y or N	Explain: 4. Properly preserved: Y or N	2. Unbroken on outer package: Y or N 2. Unbroken on outer package: Y or N 3. COC record present & complete upon sample receipt:
CLIENT: URS (and	8	Cooler temple Contain Band 192852	8¥H 81€×	steni	Conta	Pecs Pecs Post	X ح	4 × × +				4 X X	4 X X X Y	4 x x	ture) Date Time	11/10/2/15/12/14:05	Sold Time	Date Time	ure) Date Time
	PROJECT NAMENUMBER Grid, Hempster, NY	M76098, DOOO4	Magan Danel 10RS 181 And Freder (4.75		TURNARQUIND TIME: Standard	MATRIX	2/15/13/30 W TB 0315123	2/15/13 1200 GW DUPO31513	1/3/13 0905 GW HIMW- 205	1/4/13 1040 GW HIMW-20I	85/13/1330 GW HIMW-24		14/13 1210 GW 141 MW 72I	14/30953 GW HIMW-12D	Relingujshed by: (Signature) Date Time Received by: (Signature)	1. N.V.3 12:06 /2/2/	Date Time Received by (Spo	Relinquished by: (Signature) Date Time Received by: (Signature)	Relinquished by: (Signature) Date Time Received by: (Signature)

YELLOW COPY - CLIENT

WINTE CIRISM 6 10 FINGINAL

PINK COPY - LABORATORY

HZM LABS, INC.

42547 EXTERNAL CHAIN OF CUSTODY

575 Broad Hollow Rd, Melville, NY 11747-5076

Tel: (631) 694-3040 Fax: (631) 420-8436

Phone Number: 716-856-5636 2. Unbroken on outer package: Y or N
3. COC record present & complete upon sample receipt:
Y or N H2M SDG NO: KEY-CAL REMARKS: Shipped or Hand Delivered Airbills
 Ambient or chilled, Temp
 Received in good condition: Y or N COC Tape was: 1. Present on outer package: Yor N PIS/Quote # 4. Proparty preserved: Yor N LABORATORY USE ONLY 200-F 100 90 ğ S LAB I.D. NO. 302A09 Free C12 strips(041912C)Present/Absent IR gun 111728524 (122076478) pH strips (HC256691) <2 3 9 >12 Discrepancies Between COC Record? Yor N NOTES: Sample Labels and Cooler temp () 7°C CM Explain: NORG Metal ANALYSIS REQUESTED 3 E L 1100 3/20/13 (15.2). Lot# Date PCB ORGANIC BNA CLIENT: AQV Description Containers 3 7 Sample Container Total No. of ceived by. (Signature) Received by: (Signature) 20/13/14:50 Time FIELD I.D. HIMM -OKI 1 MW - 0 85 HIMW-087 Standad サーイダーマの TB032013 8 1VRS 223 1117 6098. DOOD4 3/20/B 03201 National Grid Date 7 8 SAMPLERS: (signature)/Client PROJECT NAME/NUMBER DATE TIME MATRIX 3 W2/13/1400/6W 3 TURNARQUND TIME: 3 3 Relinquished by. (Signature) Inquished by: (Signature) quished by: (Signature 100 1530 0/12/0822 104 11 1/04 1/07/

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

WANTEY GORB 16 GREENAL

tel 631.694.3040 fax 631.420.8436

SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLES RECEIVED: 3/13/13 – 3/20/13 SDG #: KEY-URS161

For Samples:

HIMW-13D	HIMW-15I	HIMW-20I	HIMW-08I
HIMW-13I	HIMW-22	HIMW-20S	HIMW-08S
HIMW-13S	HIMW-23	HIMW-24	HIMW-25
HIMW-14D	HIMW-12D	DUP031513	FB032013
HIMW-14I	HIMW-12I	TB031513	TB 032013
HIMW-15D	HIMW-12S	HIMW-08D	

The above water sample(s) and blank(s) was/were analyzed for a select list of volatile organic analytes by EPA method 8260B.

All Q. C. data and calibrations met the requirements of the method, and no problems were encountered with sample analysis. The following should be noted:

Sample HIMW-13S was analyzed as matrix spike/ matrix spike duplicate (MS/MSD). All percent recoveries for the lab fortified blanks and recoveries and RPDs for the MS and MSD were within Q. C. limits.

CCC and SPCC requirements were met in all calibrations. Average response factors were used for the initial calibration.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: April 2, 2013

Ursula Middel Technical Manager

tel 631.694.3040 fax 631.420.8436

SDG NARRATIVE FOR SEMIVOLATILE ORGANICS SAMPLES RECEIVED: 3/13/13, 3/15/13 & 3/20/13 SDG #: KEY-UR\$161

For Samples:

HIMW-13D	HIMW-22	HIMW-24
HIMW-13I	HIMW-23	DUP031513
HIMW-13S	HIMW-12D	HIMW-08D
HIMW-14D	HIMW-12I	HIMW-08I
HIMW-14I	HIMW-12S	HIMW-08S
HIMW-15D	HIMW-20I	HIMW-25
HIMW-15I	HIMW-20S	FB032013

The above sample(s) was/were analyzed for a select list of semivolatile organic analytes by EPA method 8270C.

All Q. C. data and calibrations met the requirements of the method unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

Sample HIMW-13S was analyzed as the matrix spike/matrix spike duplicate. All percent recoveries and RPD's were met. Lab fortified blanks were analyzed. All percent recoveries were within or above OC limits.

Sample HIMW-08S had low internal standard area counts for d12 perylene. The sample was re-injected with similar area counts. Both sets of data are submitted.

All CCC and SPCC calibration requirements were met. In the initial calibrations, average response factors were employed as applicable, and linear or quadratic regression functions were used for RSDs above 15%.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: April 8, 2013

Joann M. Slavin

Senior Vice President

8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: **H2M LABS INC** Contract: Lab Code: <u>H2M</u> Case No.: **KEY-URS** SAS No.: SDG No.: KEY-URS161 EPA Sample No.(SSTD050##): SSTD025 Date Analyzed: 03/25/13 Lab File ID (Standard): 3\N56917.D Time Analyzed: <u>17:41</u> Instrument ID: HP5973N GC Column: Rxi-5SIL ID: 0.25 (mm) IS4 IS5 IS6 AREA# RT# AREA# RT# AREA# RT# 12 HOUR STD 240499 13.09 205043 15.83 176454 17.19 UPPER LIMIT 480998 13.59 410086 16.33 352908 17.69 LOWER LIMIT 120250 12.59 102522 15.33 88227 16.69 **EPA SAMPLE** NO. 01 MB-38904 248679 13.09 163363 15.81 97368 17.18 02 LFB-38904 256071 13.09 170813 15.82 114870 17.18 HIMW-08D 03 258402 13.09 169996 15.80 104185 17.17 04 180-WMIH 237553 13.09 155990 15.81 97477 17.17 05 HIMW-08S 200965 13.10 145593 15.82 (65039*) 17.19 HIMW-25 06 234269 13.09 153092 15.81 91436 17.18 FB032013 218710 13.09 147215 15.80 89223

IS4 = Phenanthrene-d10

IS5 = Chrysene-d12

IS6 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

page <u>1</u> of <u>1</u>

17.16

^{*} Values outside of QC limits.

KEY-URS161 S105

8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: **H2M LABS INC** Contract: Lab Code: Case No.: **KEY-URS** SAS No.: _____ SDG No.: KEY-URS161 EPA Sample No.(SSTD050##): SSTD025 Date Analyzed: 03/26/13 Lab File ID (Standard): 3W56938.D Time Analyzed: 11:03 Instrument ID: HP5973N GC Column: Rxi-5SIL ID: 0.25 (mm) IS4 IS5 IS6 AREA# RT# AREA# RT# AREA# RT# 12 HOUR STD 244627 208661 15.82 13.09 173829 17.18 **UPPER LIMIT** 489254 13.59 417322 16.32 347658 17.68 LOWER LIMIT 122314 12.59 104331 15.32 86915 16.68 **EPA SAMPLE** NO.

154713

15.83

64843*

17.19

IS4 = Phenanthrene-d10

ISS = Chrysene-d12

01

HIMW-08SRE

225827

13.10

IS6 = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = -50% of internal standard area
RT UPPER LIMIT = +0.50 minutes of internal standard RT
RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

page <u>1</u> of <u>1</u>

^{*} Values outside of QC limits.

HZM LABS, INC.

575 Broad Hollow Rd, Melville, NY 11747-5076

42550 EXTERNAL CHAIN OF CUSTODY

Bot tastoans HZM SDG NO: YEY-WLS 162 216-856-5636 Present on outer package: Y or N
 Unbroken on outer package: Y or N
 COC record present & complete upon sample receipt
 Y or N REMARKS: Shipped or Hand Delivered Airbill#
 Amblent or chilled, Temp.
 Received in good condition: Y or N Project Contact Phone Number: PIS/Quote # 4. Property preserved: Y or N LABORATORY USE ONLY 6,7 S L 3 3 Z ઝુ 53 COC Tape was: 3 LAB I.D. NO. free Cl2 strips(041912C)Present/Absent R gun (11728524) 122076478 oH strips (HC256691) ≤2 3 9 ≥12 363974 Discrepancies Between COC Record? Yor N NOTES: Sample Labels and Cooler temps, 2-2 BC CM Explain: NORG Metal ANALYSIS REQUESTED 16:00 <u>₽</u> DIMO Date Q PCB Pest ORGANIC 81E) **AN8** YON CLIENT: Description Containers C Sample Container Total No. of Received by: (Signature) PROJECT NAMEINUMBER Noch enal G nd, Hempstad, NY 55 <u>=</u> 11176091. 00004 FIELD I.D. An Nearol /URS +1 MW-035 423 Standard T/MM-OSI HIMM- 03'I HIMM-055 Tel: (631) 694-3040 Fax: (631) 420-8436 HMW-OSD Duf031913 子MN 930 13/19/13 3/16/13 TB031913 Date SAMPLERS: (signature)/Client DATE TIME MATRIX 3 3 3 X FURNAROUND TIME: 3 by (Signature) delinquished by: (Signature) elinquished by. (Signature) Relinquished by: (Signature) 18460151/61/ DELIVERABLES 148 1700 49/15/07581 100 / 1400 K 18/13 1158 8 7,912

YELLOW COPY - CLIENT

PINK COPY - LABORATORY

KEY-WHKE162PS3 - ORIGINAL

tel 631.694.3040 fax 631.420.8436

SDG NARRATIVE FOR VOLATILE ORGANICS SAMPLES RECEIVED: 3/19/13 SDG #: KEY-URS162

For Samples:

HIMW-03D HIMW-05I HIMW-03I HIMW-05S HIMW-03S DUP031913 HIMW-05D TB031913

The above water sample(s) and blank(s) was/were analyzed for a select list of volatile organic analytes by EPA method 8260B.

All Q. C. data and calibrations met the requirements of the method, and no problems were encountered with sample analysis. The following should be noted:

No sample from this SDG was submitted for matrix spike/ matrix spike duplicate (MS/MSD) analysis. All percent recoveries for the lab fortified blank were within Q. C. limits.

CCC and SPCC requirements were met in all calibrations. Average response factors were used for the initial calibration.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: April 2, 2013

Ursula Middel

Technical Manager

575 Broad Hollow Road Melville, NY 11747

tel 631.694.3040 fax 631.420.8436

SDG NARRATIVE FOR SEMIVOLATILE ORGANICS SAMPLES RECEIVED: 3/19/13 SDG #: KEY-URS162

For Samples:

HIMW-03D	HIMW-05I
HIMW-03I	HIMW-05S
HIMW-03S	DUP031913
HIMW-05D	

The above water sample(s) was/were analyzed for a select list of semivolatile organic analytes by EPA method 8270C.

All Q. C. data and calibrations met the requirements of the method unless discussed below, and no problems were encountered with sample analysis. The following should be noted:

No matrix spike / matrix spike duplicate (MS/MSD) was submitted. A lab fortified blank was analyzed. All percent recoveries were within Q. C. limits.

Samples HIMW-05D, HIMW-05I and DUP031913 were reanalyzed at a dilution to keep the concentration of targeted analytes within the calibration range. Both sets of data are reported. No surrogate recoveries are reportable for two dilutions, because the surrogate compounds are "diluted out", i. e. below reportable level.

All CCC and SPCC calibration requirements were met. In the initial calibrations, average response factors were employed as applicable, and quadratic regression functions were used for RSDs above 15%, which applies to benzo(k)fluoranthene.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: April 2, 2013

Ursula Middel Technical Manager

APPENDIX B OXYGEN SYSTEM OPERATION & MAINTENANCE MEASUREMENTS

SYSTEM #1

Date: Time: Weather: Outdoor Tempera Inside Trailer Temp Performed By	erature:	11 Su ~40 ~70	2013 :35 nny O° F O° F	- - - - -							
	O ₂ Ge	enerator (A	irSep)			(Compressor	(Kaesar Rota	ry Screv	v)	
Hours			5,000.9	<u>-</u>	Compressor T	Γank *			115		(psi)
Feed Air Pressure *			66	(psi)		(reac	lings below	are made from	control p	oanel)	
			7 0		Delivery Air				109	•	(psi)
Cycle Pressure *			50	(psi)	Element Outle	et Temperati	ıre		176		(oF)
Oxygen Receiver Pressu	re *			100 (psi)	Running Hou Loading Hou				5,856 3,688		(hours) (hours)
Oxygen Purity * maximum reading during loa	iding cycle		98.1	(percent)	* maximum read	ing during load	ing cycle				
Т				O ₂ Injecti					T	ion Bank 3	
	njection Bank	l			Injection Bank 2				Inject	ion bank 3	
ID	njection Bank i Depth	scfh	psi	ID	Injection Bank 2 Depth	scfh	psi	ID	Depth	scfh	psi
			psi 31	ID OW-1-5S			psi 16	ID OW-1-9D	 		psi 27
ID	Depth	scfh			Depth	scfh			Depth	scfh	
ID OW-1-1	Depth 95.5	sefh 38	31	OW-1-5S	Depth 67.3	scfh 34	16	OW-1-9D	Depth 88.5	scfh 33	27
OW-1-1 OW-1-2	95.5 96.5	38 38	31	OW-1-5S OW-1-6S	67.3 67.0	34 30	16 17	OW-1-9D	88.5 87.2	33 28	27
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	38 38 28	31 31 30	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	34 30 28	16 17 16	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1	scfh 33 28 32	27 27 29
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	38 38 38 28 25	31 31 30 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	sefh 34 30 28	16 17 16 17	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	sefh 33 28 32 35	27 27 29 28
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0	scfh 38 38 28 25 22	31 31 30 29 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7	sefh 34 30 28 16 27	16 17 16 17 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	Depth	sefh 33 28 32 35 30	27 27 29 28 28
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	scfh 38 38 28 25 22 23	31 31 30 29 29 28	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7 66.0 54.6	sefh 34 30 28 16 27 26	16 17 16 17 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	Depth	sefh 33 28 32 35 30 34	27 27 29 28 28 28

SYSTEM #1

				O ₂ Injecti	on System #1						
	Injection Bank	4			Injection Bank 5				Injecti	ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	25	13	OW-1-17D	79.5	24	13	OW-1-21S	49.3	32	11
OW-1-14S	52.7	33	13	OW-1-18D	78.3	30	24	OW-1-22S	49.3	31	11
OW-1-15S	52.2	35	13	OW-1-19D	78.9	32	26	OW-1-23S	48.8	33	11
OW-1-16SR	51.8	20	26	OW-1-20D	79.5	30	27	OW-1-24S	48.4	35	11
OW-1-17S	50.7	30	19	OW-1-21D	79.5	28	26	OW-1-25S	48.8	30	12
OW-1-18S	50.2	30	12	OW-1-22D	79.5	32	25	OW-1-26SR	48.3	26	12
OW-1-19S	49.7	82	14	OW-1-23D	78.7	34	25	OW-1-27S	48.3	38	12
			_	OW 1 24D	78.2	34	26	OW-1-28S	48.3	30	12
				OW-1-24D rate of ~30 scfh provided that Bank #5 were set at 3 minutes. O ₂ Injecti	the pressure readin						
ments: All injec Corpora	tion point flows we tion after collecting	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	the pressure readin On System #1 Injection Bank 8	g was no greate	er than the press	sures provided in th	e hydrosta Injecti	ion Bank 9	red by UR
All injec	tion point flows we	ere adjusted to g readings. Inje	the target flow i	rate of ~30 scfh provided that Bank #5 were set at 3 minutes.	the pressure readin	g was no greate			e hydrosta	atic tables prepa	
ments: All injec Corpora	tion point flows we tion after collecting	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	the pressure readin On System #1 Injection Bank 8	g was no greate	er than the press	sures provided in th	e hydrosta Injecti	ion Bank 9	red by UR
nents: All injec Corpora	tion point flows we tion after collecting Injection Bank 7	ere adjusted to g readings. Inju	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	the pressure readin on System #1 Injection Bank 8 Depth	g was no greate	psi	sures provided in the	Injecti	ion Bank 9	ps 28
nents: All injec Corpora ID OW-1-25D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inje	the target flow a ection times at E psi	rate of ~30 scfh provided that Bank #5 were set at 3 minutes. O ₂ Injecti ID OW-1-29S	the pressure readin on System #1 Injection Bank 8 Depth 48.5	g was no greate	psi 12	ID OW-1-33D	Injecti Depth 83.2	ion Bank 9 scfh 44	ps 28
ID OW-1-25D OW-1-26D	Injection Bank 7 Pepth 78.1	ere adjusted to g readings. Injo	the target flow is ection times at E psi 26 27	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti ID OW-1-29S OW-1-30S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8	g was no greate seft 32 30	psi 12	ID OW-1-33D OW-1-34D	Injecti Depth 83.2	ion Bank 9 scfh 44	ps 28 30 28
ID OW-1-25D OW-1-26D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	ere adjusted to g readings. Injectors of the second of the	the target flow rection times at E psi 26 27 27	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti ID OW-1-29S OW-1-30S OW-1-31S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8	g was no greate scfn 32 30 27	psi 12 13	ID OW-1-33D OW-1-35D	Injecti Depth 83.2 84.5	ion Bank 9 scfh 44 37	ps 28 30 28 29
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Bank	ere adjusted to g readings. Injectors of the second of the	the target flow rection times at E psi 26 27 27 26	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Injecti ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	the pressure readin fon System #1 Injection Bank 8 Depth 48.5 48.8 49.3	g was no greate sefh 32 30 27 31	psi	ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injecti Depth 83.2 84.5 85.0	ion Bank 9 scfh 44 37 33	ps 28 30 28 29 28
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Bank	ere adjusted to g readings. Inje 7 scfh 37 27 26 52	the target flow rection times at E psi 26 27 27 26 25	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Injecti ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	the pressure readin fon System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3	g was no greate seft 32 30 27 31 27	psi	ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Injecti Depth 83.2 84.5 85.0 84.0	son Bank 9 scfh 44 37 33 27 30	red by UR
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	Injection Bank	ere adjusted to g readings. Injectors of the second of the	the target flow rection times at E psi 26 27 27 26 25 28	Ow-1-31S OW-1-32S OW-1-34S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7 50.1	g was no greate scfh 32 30 27 31 27 28	psi	OW-1-33D OW-1-35D OW-1-36D OW-1-37D OW-1-38D	Name	37 33 27 30 37	28 29 28 32

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	on System #1						
Iı	njection Bank 1	.0			Injection Bank 11				Injecti	on Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	23	12	OW-1-41D	73.6	21	22	OW-1-43	67.4	25	19
OW-1-38S	50.6	30	12	OW-1-42D	71.0	25	20	OW-1-44	66.6	24	18
OW-1-39S	50.7	43	12	OW-1-45	65.7	28	19	OW-1-51R	60.6	38	16
OW-1-40S	51.1	21	13	OW-1-46	64.3	27	17	OW-1-52	59.3	27	16
OW-1-41S	51.5	32	13	OW-1-47	63.4	24	17	OW-1-53	60.0	25	16
OW-1-42S	51.3	38	13	OW-1-48	62.5	27	17	OW-1-54	60.0	32	17
				OW-1-49	61.5	27	16				
				OW-1-50	61.0	28	16				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

					0	2 Injectio	n System #1					
	Mor	itoring Points	Log			Mo	nitoring Points L	лоg		Monitori	ng Points Log	
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	NM	20.6	2.54	0	MP-1-5	NM	19.3	3.09	0	MP-1-1D	2.85	3.13
MP-1-1S	NM	28.0	2.89	0	MP-1-6	NM	18.8	2.54	0	MP-1-2D	3.31	2.90
MP-1-2D	NM	20.7	3.61	0	MP-1-7	NM	19.0	2.17	0	MP-1-3D	3.05	2.39
MP-1-2S	NM	23.1	3.18	0	MP-1-8	NM	18.7	2.24	0	MP-1-4D	2.14	2.45
MP-1-3D	NM	19.1	4.55	0								
MP-1-3S	NM	19.1	2.83	0								
MP-1-4D	NM	20.9	2.63	0								
MP-1-4S	NM	23.2	2.65	0								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

							Date: 1/8/2013	
				OPERATIONAL 1	NOTES			
GA5 Air C	Compressor				1000			
		el Checked with system u	nloaded*		Yes	X	No	ŀ
		d system, wait until Deliv	ery Air Pressure is les	ss than 9 psi				l
	2) Oil Leve	el with system unloaded						l
	2) 27 11	Low (red)		Normal (green)		X	High (orange)	ļ
	3) Oil adde		Yes		No	X		ŀ
	4) Oil chan5) Oil filter		Yes		No No	X		ŀ
	6) Air filter		Yes Yes		No	X		ŀ
		rator changed	Yes		No	X		!
		l strips checked	Yes		No	X		ļ
	,							ļ
AS-80 O ₂	Generator							ŀ
	1) Prefilter		YesYes		No	X		ŀ
	2) Coalesci	ing changed	Yes		No _	X		ŀ
				GENERAL SYSTEM	M NOTES			
				OL: LIKE	1.10.22			
<u>Trailer</u>	1)	Performed general hous	ekeeping (i.e. sweep,	collect trash inside and		X	No	
	2)	Abnormal conditions of	served (e.g. vandalisr	n)				
	3)	Other major activities co	ompleted					
	4)	Supplies needed						
	5)	Visitors						
		ies such as any alarm/sh l/filter/gasket and/or an			ıl			
Found syst	em in power f	failure alarm upon arrival	l. However, the syster	m was running. Wiped	down all e	equipment a	and cleaned up all garbage from around fence areas.	
	U 1	he injection points, high paned and needs to be addre	1 31 0	has been noted at mon	itoring poi	nts MP-1-3	3S, MP-1-3D and MP-1-4D. This is a safety concern	a that has
Electric Mo	eter # 96-934-	-323 tied into Pole #4						
Action Ite	ms:							
								ļ

SYSTEM #1

Date: Time: Weather: Outdoor Tempera Inside Trailer Temp Performed By	erature: y:	10 Sn ~3 ~6: Mike	/2013 :15 ow 1° F 5° F Ryan	-							
	O ₂ Ge	enerator (A	irSep)			(Compressor	(Kaesar Rotai	y Screv	v)	
Hours			5,133.3	-	Compressor T	∑ank *			105		(psi)
Feed Air Pressure *			105	(psi)		(reac	dings below	are made from	control p	anel)	
Cycle Pressure *			65	(psi)	Delivery Air Element Outle	et Temperati	ure		114 176		(psi) (oF)
Oxygen Receiver Pressur	re *			100 (psi)	Running Hou Loading Hou				6,004 3,779		(hours)
Oxygen Purity * maximum reading during loa	ading cycle		94.4	(percent)	* maximum read	ing during load	ing cycle				
				O ₂ Injecti	on System #1						
	njection Bank		nei	ID.	Injection Bank 2	cofh	nei	ID	–	ion Bank 3	ngi
ID OW-1-1	Depth 95.5	scfh 30	psi 29	ID OW-1-5S	Depth 67.3	scfh 30	psi 17	ID OW-1-9D	Depth 88.5	scfh 30	psi 28
ID	Depth	scfh			Depth				Depth	scfh	
ID OW-1-1	Depth 95.5	scfh 30	29	OW-1-5S	Depth 67.3	30	17	OW-1-9D	Depth 88.5	scfh 30	28
OW-1-1 OW-1-2	95.5 96.5	30 40	29	OW-1-5S OW-1-6S	67.3 67.0	30	17	OW-1-9D OW-1-10D	88.5 87.2	30 40	28
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	30 40 40	29 31 31	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	30 30 30	17 18	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1	sefh 30 40 30	28 28 29
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	sefh 30 40 40 50	29 31 31 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	30 30 30 30	17 18 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	30 40 30 30	28 28 29 29
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0	sefh 30 40 40 50 65	29 31 31 30 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7	30 30 30 30 30 35	17 18 18 19	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	Depth	30 40 30 30 30 30	28 28 29 29 29
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	scfh 30 40 40 50 65	29 31 31 30 29 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0 54.6	30 30 30 30 30 35 30	17 18 18 19 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	Depth	30 40 30 30 30 30 30	28 28 29 29 29 28 29

SYSTEM #1

OW-1-13S 53.1 30 13 OW-1-17D 79.5 30 13 OW-1-21S 49.3 30 13									Date:		1/22/20	13
					O ₂ Inject	ion System #1						
OW-1-13S 53.1 30 13 OW-1-17D 79.5 30 13 OW-1-21S 49.3 30 1 OW-1-14S 52.7 40 14 OW-1-18D 78.3 30 27 OW-1-22S 49.3 30 1 OW-1-14S 52.7 30 13 OW-1-19D 78.9 30 27 OW-1-22S 48.8 40 1 OW-1-16SR 51.8 30 25 OW-1-20D 79.5 40 27 OW-1-24S 48.4 30 1 OW-1-17S 50.7 25 18 OW-1-21D 79.5 30 26 OW-1-25S 48.8 35 1 OW-1-18S 50.2 25 13 OW-1-21D 79.5 20 25 OW-1-26SR 48.3 25 1 OW-1-19S 40.7 30 14 OW-1-23D 78.7 30 24 OW-1-25S 48.3 30 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 1 OW-1-20S 49.3 30 14 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 1 OW-1-20S All injection point flows were adjusted to the target flow rate of ~30 seth provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by UF Corporation after collecting readings. Injection tent at 3 minutes.		Injection Bank	4		2 3					Inject	ion Bank 6	
OW-1-14S 52.7 40 14 OW-1-18D 78.3 30 27 OW-1-22S 49.3 30 1 OW-1-16SR 52.2 30 13 OW-1-19D 78.9 30 27 OW-1-23S 48.8 40 1 OW-1-16SR 51.8 30 25 OW-1-20D 79.5 40 27 OW-1-24S 48.4 30 1 OW-1-17S 50.7 25 18 OW-1-21D 79.5 30 26 OW-1-24S 48.8 35 12 OW-1-18S 50.2 25 13 OW-1-22D 79.5 20 25 OW-1-26SR 48.3 25 11 OW-1-19S 49.7 30 14 OW-1-23D 78.7 30 24 OW-1-27S 48.3 30 13 OW-1-20D 49.3 30 13 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 12 OW-1-20S 49.3 30 13 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 12 OW-1-20S 49.3 30 13 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 12 OW-1-20S 49.3 30 13 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 12 OW-1-20D 78.1 30 27 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 25 OW-1-26D 78.1 30 27 OW-1-29S 48.5 35 12 OW-1-3D 88.2 40 21 OW-1-26D 78.1 45 28 OW-1-30S 48.8 45 13 OW-1-3D 88.0 30 22 OW-1-26D 78.1 45 28 OW-1-30S 48.8 45 13 OW-1-3D 88.0 30 22 OW-1-26D 78.1 45 28 OW-1-30S 48.8 45 13 OW-1-3D 88.0 30 22 OW-1-26D 78.4 40 26 OW-1-3SS 49.3 30 12 OW-1-35D 85.0 30 22 OW-1-29D 78.4 40 26 OW-1-3SS 49.3 30 12 OW-1-3BD 85.0 30 22 OW-1-29D 78.4 40 26 OW-1-3SS 49.7 30 12 OW-1-3BD 85.0 30 22 OW-1-20D 78.4 40 26 OW-1-3SS 49.7 30 12 OW-1-3BD 85.0 30 22 OW-1-20D 78.4 40 26 OW-1-3SS 49.7 30 12 OW-1-3BD 85.0 30 22 OW-1-20D 78.4 40 26 OW-1-3SS 49.7 30 12 OW-1-3BD 85.0 30 22 OW-1-20D 78.4 40 26 OW-1-3SS 49.7 30 12 OW-1-3BD 85.0 30 22 OW-1-20D 78.4 40 26 OW-1-3SS 49.7 30 12 OW-1-3BD 85.0 30 22 OW-1-20D 78.4 40 26 OW-1-3SS 49.7 30 12 OW-1-3BD 85.0 30 32	ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-15S 52.2 30 13 OW-1-19D 78.9 30 27 OW-1-22S 48.8 40 13	OW-1-13S	53.1	30	13	OW-1-17D	79.5	30	13	OW-1-21S	49.3	30	12
OW-1-16SR 51.8 30 25 OW-1-20D 79.5 40 27 OW-1-24S 48.4 30 13 OW-1-17S 50.7 25 18 OW-1-21D 79.5 30 26 OW-1-25S 48.8 35 13 OW-1-18S 50.2 25 13 OW-1-22D 79.5 20 25 OW-1-26SR 48.3 25 13 OW-1-19S 49.7 30 14 OW-1-23D 78.7 30 24 OW-1-27S 48.3 30 13 OW-1-20S 49.3 30 13 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 13 OW-1-20S All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by UR Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes. **Out-1-20S All injection Bank S Injection Bank S ID Depth Scfh psi ID Depth Scfh psi ID Depth Scfh psi OW-1-25D 78.1 30 27 OW-1-28S 48.5 35 12 OW-1-33D 83.2 40 22 OW-1-26D 78.1 45 28 OW-1-30S 48.8 45 13 OW-1-34D 84.5 50 3 OW-1-27D 77.9 55 28 OW-1-31S 49.3 30 12 OW-1-35D 85.0 30 22 OW-1-28D 78.4 40 26 OW-1-32S 49.3 30 12 OW-1-35D 85.0 30 22 OW-1-28D 78.4 40 26 OW-1-33S 49.7 30 12 OW-1-35D 85.0 30 22 OW-1-29D 78.4 40 26 OW-1-33S 49.7 30 12 OW-1-35D 85.0 30 23 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-35D 85.0 30 31 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-35D 85.0 30 31 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-35D 85.0 30 31 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-35D 85.0 30 31 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-35D 85.0 30 31 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-35D 85.0 30 31 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-35D 85.0 30 31 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-35D 85.0 30 30 OW-1-30D 79.0	OW-1-14S	52.7	40	14	OW-1-18D	78.3	30	27	OW-1-22S	49.3	30	11
OW-1-17S 50.7 25 18 OW-1-21D 79.5 30 26 OW-1-25S 48.8 35 13 OW-1-18S 50.2 25 13 OW-1-22D 79.5 20 25 OW-1-26SR 48.3 25 13 OW-1-19S 49.7 30 14 OW-1-23D 78.7 30 24 OW-1-27S 48.3 30 13 OW-1-20S 49.3 30 13 OW-1-24D 78.2 30 26 OW-1-28S 48.3 20 13 OW-1-20S All injection point flows were adjusted to the target flow rate of -30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by UR-OPPORTUNITIES All injection flows were adjusted to the target flow rate of -30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by UR-OPPORTUNITIES OPPORTUNITIES 19.0 13.0	OW-1-15S	52.2	30	13	OW-1-19D	78.9	30	27	OW-1-23S	48.8	40	12
OW-1-18S 50.2 25	OW-1-16SR	51.8	30	25	OW-1-20D	79.5	40	27	OW-1-24S	48.4	30	12
OW-1-19S	OW-1-17S	50.7	25	18	OW-1-21D	79.5	30	26	OW-1-25S	48.8	35	13
OW-1-20S	OW-1-18S	50.2	25	13	OW-1-22D	79.5	20	25	OW-1-26SR	48.3	25	13
All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by UR Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes. Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes. Corporation after collecting readings. Injection Bank #5	OW-1-19S	49.7	30	14	OW-1-23D	78.7	30	24	OW-1-27S	48.3	30	13
Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes. Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes.		-					20	9.4		40.0	20	13
OW-1-25D 78.1 30 27 OW-1-29S 48.5 35 12 OW-1-33D 83.2 40 21 OW-1-26D 78.1 45 28 OW-1-30S 48.8 45 13 OW-1-34D 84.5 50 3 OW-1-27D 77.9 55 28 OW-1-31S 49.3 30 12 OW-1-35D 85.0 30 29 OW-1-28D 78.0 50 27 OW-1-32S 49.3 30 12 OW-1-36D 85.0 30 29 OW-1-29D 78.4 40 26 OW-1-33S 49.7 30 12 OW-1-37D 84.0 30 29 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-38D 82.0 30 33	All injec	tion point flows we	ere adjusted to	the target flow	rate of ~30 scfh provided that Bank #5 were set at 3 minutes	the pressure readin		<u> </u>				
OW-1-26D 78.1 45 28 OW-1-30S 48.8 45 13 OW-1-34D 84.5 50 3 OW-1-27D 77.9 55 28 OW-1-31S 49.3 30 12 OW-1-35D 85.0 30 29 OW-1-28D 78.0 50 27 OW-1-32S 49.3 30 12 OW-1-36D 85.0 30 29 OW-1-29D 78.4 40 26 OW-1-33S 49.7 30 12 OW-1-37D 84.0 30 29 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-38D 82.0 30 33	All injec	tion point flows w	ere adjusted to g readings. Inj	the target flow	rate of ~30 scfh provided that Bank #5 were set at 3 minutes	the pressure readin	g was no greate	<u> </u>		e hydrosta	atic tables prepa	
OW-1-27D 77.9 55 28 OW-1-31S 49.3 30 12 OW-1-35D 85.0 30 29 OW-1-28D 78.0 50 27 OW-1-32S 49.3 30 12 OW-1-36D 85.0 30 29 OW-1-29D 78.4 40 26 OW-1-33S 49.7 30 12 OW-1-37D 84.0 30 29 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-38D 82.0 30 33	mments: All injec Corporat	tion point flows we ion after collecting	ere adjusted to g readings. Inj	the target flow ection times at l	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Inject	the pressure readin	g was no greate	er than the press	sures provided in th	e hydrosta Inject	tic tables prepare	
OW-1-28D 78.0 50 27 OW-1-32S 49.3 30 12 OW-1-36D 85.0 30 29 OW-1-29D 78.4 40 26 OW-1-33S 49.7 30 12 OW-1-37D 84.0 30 29 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-38D 82.0 30 33	nments: All injec Corporat	ition point flows we ion after collecting Injection Bank 7	ere adjusted to g readings. Injute 7 scfh	the target flow ection times at l	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID	the pressure readin	g was no greate	psi	sures provided in th	Inject	ion Bank 9	red by URS
OW-1-29D 78.4 40 26 OW-1-33S 49.7 30 12 OW-1-37D 84.0 30 23 OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-38D 82.0 30 33	All injec Corporation of the Corporation of the Cor	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Injo	the target flow ection times at I	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S	the pressure reading to the pr	g was no greate	psi 12	ID OW-1-33D	Inject Depth 83.2	ion Bank 9 scfh 40	psi
OW-1-30D 79.0 30 30 OW-1-34S 50.1 35 12 OW-1-38D 82.0 30 33	ID OW-1-25D OW-1-26D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Injured 7 Scfh 30 45	the target flow ection times at I	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S	the pressure reading to the pr	g was no greate scfh 35 45	psi 12	ID OW-1-33D OW-1-34D	Inject Depth 83.2 84.5	ion Bank 9 scfh 40	psi 28
	ID OW-1-25D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	ere adjusted to g readings. Injute 7 sefh 30 45	the target flow ection times at I psi 27 28 28	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S	the pressure reading ion System #1 Injection Bank 8 Depth 48.5 48.8	g was no greate scfh	psi 12 13	ID OW-1-33D OW-1-35D	Inject Depth 83.2 84.5	ion Bank 9 scfh 40 50	psi 28 31
	ID OW-1-25D OW-1-27D OW-1-28D	Injection Bank	ere adjusted to g readings. Injute 7 Seft 30	the target flow ection times at I	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	the pressure reading to the pr	g was no greate seft	psi	ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Inject Depth 83.2 84.5 85.0	ion Bank 9 scfh 40 50 30	psi 28 31 29
OW-1-31D 80.5 30 27 OW-1-35S 50.3 35 13 OW-1-39D 78.0 30 2	ID OW-1-25D OW-1-27D OW-1-28D OW-1-29D	Injection Bank	ere adjusted to g readings. Injute 17.	### psi 27 28 27 26 26	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	the pressure reading to System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7	g was no greate Seft	psi	ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Inject Depth 83.2 84.5 85.0 84.0	scfh 40 50 30 30	psi 28 31 29 29
OW-1-32D 81.6 30 28 OW-1-36S 50.3 40 13 OW-1-40D 76.0 30 23	ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	Injection Bank 7 Page 1 Page 2 Page 2	ere adjusted to g readings. Injo 7	the target flow ection times at I psi 27 28 28 27 26 30	ow-1-32S OW-1-34S	the pressure reading ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7 50.1	g was no greate scfh 35 45 30 30 30 35	psi	OW-1-33D OW-1-35D OW-1-37D OW-1-38D	Name	scft 40 50 30 30 30	psi 28 31 29 29 28

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	on System #1						
Iı	njection Bank 1	.0		J	njection Bank 11				Injecti	on Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	25	12	OW-1-41D	73.6	45	24	OW-1-43	67.4	25	20
OW-1-38S	50.6	35	13	OW-1-42D	71.0	40	22	OW-1-44	66.6	20	18
OW-1-39S	50.7	20	13	OW-1-45	65.7	40	19	OW-1-51R	60.6	30	17
OW-1-40S	51.1	30	13	OW-1-46	64.3	30	18	OW-1-52	59.3	30	16
OW-1-41S	51.5	30	14	OW-1-47	63.4	30	18	OW-1-53	60.0	30	16
OW-1-42S	51.3	30	13	OW-1-48	62.5	30	18	OW-1-54	60.0	30	15
				OW-1-49	61.5	35	17				
				OW-1-50	61.0	30	17				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

					0	2 Injectio	n System #1					
	Mor	itoring Points	Log			Mo	nitoring Points I	лоg		Monitori	ing Points Log	
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	26.52	NM	18.70	0	MP-1-5	26.03	NM	17.87	0	MP-1-1D	18.01	17.40
MP-1-1S	26.66	NM	10.07	0	MP-1-6	18.54	NM	6.19	0	MP-1-2D	9.00	7.79
MP-1-2D	20.64	NM	11.14	0	MP-1-7	21.85	NM	5.12	0	MP-1-3D	10.11	9.01
MP-1-2S	21.01	NM	9.46	0	MP-1-8	22.93	NM	4.97	0	MP-1-4D	7.69	8.40
MP-1-3D	18.73	NM	12.71	0								
MP-1-3S	18.71	NM	8.07	0								
MP-1-4D	21.51	NM	7.11	0.3								
MP-1-4S	21.38	NM	7.00	0								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

								Date: 1/22/2013	3
				O	PERATIONAL N	NOTES			
GA5 Air Compr	essor								
1) (Oil Level C	Checked with system unloa system, wait until Delivery		is less tha	an 9 psi	Yes	X	No	
		vith system unloaded			•				
		Low (red)	X		Normal (green)	_		High (orange)	
· · · · · · · · · · · · · · · · · · ·	Oil added		Yes	X	_	No			
	Oil change		Yes		_	No	X		
	Oil filter ch	0	Yes		_	No No	X		
1	Air filter Cl Oil separate	-	Yes Yes		_	No	X		
	•	rips checked	Yes	X	_ _	No	A		
AS-80 O ₂ Gener	rator								ļ
II /	Prefilter ch	C	Yes			No	X		ļ
2) (Coalescing	changed	Yes		_	No	X		
				GEI	NERAL SYSTEM	A NOTES			
Trailer 1)	P	erformed general houseke	eping (i.e. swe	eep, collec	ct trash inside and	out, etc.) Yes	X	No	
2)	A	bnormal conditions obser-	/ed (e.g. vand	alism)					
3)	0	ther major activities comp	leted						
4)	S	upplies needed							
	_								
5)	V	isitors							
	_								
transported off Found temperate Teflon tape. For with a spare flow and cleaned up a Since starting up	r-site, oil/fi ure inside s und soleno w meter. T all garbage	id on Air Sep unit not clos ook apart auto drains and from around fence areas.	her abnorma Made shields sing. Took ap cleaned out si	al operations to seal uppart valve and the s	ing conditions: up fresh air vents. I and cleaned out du p. Soaked up small	Found site ust buildup I amount of	and reinstalle of oil and wate	pressor leaking. Drained oil and resealed site ed. Found bad flow meter at flow meter #24 a er from separator for disposal. Wiped down al MP-1-3D and MP-1-4D. This is a safety conditional control of the second series of	and replaced ll equipment
Electric Meter #	96-934-32	3 tied into Pole #4							
Action Items:									

SYSTEM #1

Date: Time: Weather: Outdoor Tempera Inside Trailer Temp Performed By	erature:	12 Sn ~3 ~6.	2013 :40 ow 1° F 5° F Ryan	- - - - -							
	O ₂ Ge	enerator (A	irSep)			(Compressor	(Kaesar Rotai	ry Screv	v)	
Hours			5,314.7	-	Compressor T	Γank *			115		(psi)
Feed Air Pressure *			110	(psi)		(reac	lings below	are made from	control p	oanel)	
			65	<i>(</i>)	Delivery Air				114	<u>.</u>	(psi)
Cycle Pressure *			65	(psi)	Element Outle	et 1 emperati	ıre		142	•	(oF)
Oxygen Receiver Pressu	re *			105 (psi)	Running Hou Loading Hou				6,205 3,905		(hours)
Oxygen Purity * maximum reading during loa	iding cycle		95.1	(percent)	* maximum read	ing during load	ing cycle				
I	njection Bank 1	1		O ₂ Injecti	Injection Bank 2				Inject	ion Bank 3	
									9		
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
ID OW-1-1	Depth 95.5	scfh 30	psi 30	OW-1-5S	Depth 67.3	scfh 30	psi 18	OW-1-9D	Depth 88.5	scfh 30	psi 28
OW-1-1	95.5	30	30	OW-1-5S	67.3	30	18	OW-1-9D	88.5	30	28
OW-1-1 OW-1-2	95.5 96.5	30	30 29	OW-1-5S OW-1-6S	67.3 67.0	30	18	OW-1-9D OW-1-10D	88.5 87.2	30 35	28
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	30 30 40	30 29 31	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	30 30 25	18 18	OW-1-9D OW-1-10D OW-1-11D	88.5 87.2 86.1	30 35 35	28 27 29
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3 95.0	30 30 40 45	30 29 31 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9 66.7	30 30 25 20	18 18 18 17	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	30 35 35 45	28 27 29 29
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0 93.9	30 30 40 45 30	30 29 31 30 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7 66.0	30 30 25 20	18 18 18 17 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	88.5 87.2 86.1 85.3	30 35 35 45 30	28 27 29 29 28
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	30 30 40 45 30 30	30 29 31 30 29 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0 54.6	30 30 25 20 15	18 18 18 17 18 13	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	88.5 87.2 86.1 85.3 84.7	30 35 35 45 30 30	28 27 29 29 28 29

SYSTEM #1

				O ₂ Inject	ion System #1						
	Injection Bank				Injection Bank 5					ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	25	14	OW-1-17D	79.5	30	14	OW-1-21S	49.3	30	12
OW-1-14S	52.7	35	15	OW-1-18D	78.3	30	26	OW-1-22S	49.3	40	11
OW-1-15S	52.2	30	14	OW-1-19D	78.9	30	27	OW-1-23S	48.8	40	12
OW-1-16SR	51.8	30	27	OW-1-20D	79.5	35	28	OW-1-24S	48.4	45	12
OW-1-17S	50.7	30	25	OW-1-21D	79.5	30	27	OW-1-25S	48.8	55	13
OW-1-18S	50.2	30	13	OW-1-22D	79.5	40	27	OW-1-26SR	48.3	50	13
OW-1-19S	49.7	30	14	OW-1-23D	78.7	40	27	OW-1-27S	48.3	40	14
OW. 4 200	49.3	30	13	OW-1-24D	78.2	50	28	OW-1-28S	48.3	30	15
ments: Corporati	ion point flows wi	ere adjusted to g readings. Inj	the target flow	rate of ~30 scfh provided that Bank #5 were set at 3 minutes	ion System #1		er than the press	sures provided in th			red by UR
ments: All inject Corporati	ion point flows we con after collecting	ere adjusted to g readings. Inj	the target flow rection times at E	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject	ion System #1 Injection Bank 8				Injecti	ion Bank 9	
ments: All inject Corporati	ion point flows wi	ere adjusted to g readings. Inj	the target flow	rate of ~30 scfh provided that Bank #5 were set at 3 minutes	ion System #1		psi	sures provided in the			
ments: All inject Corporati	ion point flows we con after collecting	ere adjusted to g readings. Inj	the target flow rection times at E	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject	ion System #1 Injection Bank 8				Injecti	ion Bank 9	ps
ments: All inject Corporati	ion point flows we con after collecting Injection Bank 7 Depth	ere adjusted to g readings. Inj	the target flow rection times at E	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject ID	ion System #1 Injection Bank 8 Depth	scfh	psi	ID	Injecti Depth	ion Bank 9	ps :
Mall inject Corporation ID OW-1-25D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inj 7 scfh 30	the target flow at Ection times at E	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S	ion System #1 Injection Bank 8 Depth 48.5	scfh 30	psi 12	ID OW-1-33D	Injecti Depth	scfh 25	28 31
ID OW-1-25D OW-1-26D	Injection Bank 7 Test 1 Test 1 Test 1	ere adjusted to g readings. Inj 7 scfh 30 40	the target flow a ection times at E psi 27 29	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S	ion System #1 Injection Bank 8 Depth 48.5	scfh 30 40	psi 12 13	ID OW-1-33D OW-1-34D		scfh 25 20	28 31 29
ID OW-1-25D OW-1-26D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	re adjusted to g readings. Inj readings. Inj readings. 30 40 30	the target flow is ection times at E psi 27 29 28	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S	ion System #1 Injection Bank 8 Depth 48.5 48.8	scfh 30 40 55	psi 12 13 13	ID OW-1-33D OW-1-34D OW-1-35D	Injecti Depth	soft 25 20 30	28 31 31 29 29
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Injection Bank 7 78.1 77.9 78.0	ere adjusted to g readings. Inj 7 sefh 30 40 30 30	the target flow ection times at E psi 27 29 28 27	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S	ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3	scfh 30 40 55 65	12 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injects Depth	scfh 25 20 30 30	28 31 29 29 28 32
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Bank	re adjusted to g readings. Inj 7 seft 30 40 30 30 30	the target flow ection times at E psi 27 29 28 27 25	Og Inject Og Inject ID OW-1-29S OW-1-31S OW-1-32S OW-1-33S	ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3	scfh 30 40 55 65 80	12 13 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D		scfh 25 20 30 30	28 31 29 29 28 32
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	Injection Bank	ere adjusted to g readings. Inj 7 sefh 30 40 30 30 30 20	the target flow ection times at E psi 27 29 28 27 25 28	Og Inject Og Inject ID OW-1-29S OW-1-31S OW-1-32S OW-1-33S OW-1-34S	ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7 50.1	scfh 30 40 55 65 80 30	12 13 13 13 13 12	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D OW-1-38D		30 30 30	28 31 29 29 28

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

				O ₂ Injection	n System #1						
Ir	njection Bank 1	0		I	njection Bank 11				Injecti	on Bank 12	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-37S	50.5	30	11	OW-1-41D	73.6	25	24	OW-1-43	67.4	30	19
OW-1-38S	50.6	40	12	OW-1-42D	71.0	25	30	OW-1-44	66.6	30	18
OW-1-39S	50.7	30	11	OW-1-45	65.7	35	19	OW-1-51R	60.6	30	17
OW-1-40S	51.1	30	13	OW-1-46	64.3	45	18	OW-1-52	59.3	30	16
OW-1-41S	51.5	30	14	OW-1-47	63.4	40	18	OW-1-53	60.0	35	17
OW-1-42S	51.3	30	13	OW-1-48	62.5	30	17	OW-1-54	60.0	30	16
				OW-1-49	61.5	20	17				
				OW-1-50	61.0	30	17				

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

					O	2 Injectio	n System #1					
	Mor	nitoring Points	Log			Mo	nitoring Points L	лоg		Monitori	ing Points Log	
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	26.62	22.7	NM	0	MP-1-5	26.30	21.6	NM	0	MP-1-1D	NM	NM
MP-1-1S	26.81	40.0	NM	0	MP-1-6	18.59	20.9	NM	0	MP-1-2D	NM	NM
MP-1-2D	20.75	21.0	NM	0	MP-1-7	21.88	20.9	NM	0	MP-1-3D	NM	NM
MP-1-2S	21.16	39.1	NM	0	MP-1-8	22.98	30.0	NM	0	MP-1-4D	NM	NM
MP-1-3D	18.82	20.9	NM	0.3								
MP-1-3S	18.85	20.9	NM	0								
MP-1-4D	21.52	32.2	NM	0.5								
MP-1-4S	21.36	40.0	NM	0								

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

						Date:	2/8/2013
			OPERATIONAL	NOTES			
Compressor			OI ERRITIONALE	TOTES			
1) Oil Le * Unlo	oad system, wait until Deliv		ess than 9 psi	Yes	X	No	
ŕ	Low (red)	Yes	Normal (green)	No _	X	High (orange)	
5) Oil filt	ter changed	Yes		No	X		
7) Oil sep	parator changed	Yes		No No	X		
Generator							
1) Prefilte		Yes Yes		No No	X X		
			GENERAL SYSTEM	4 NOTES	<u> </u>		
1)	Ü			out, etc.) Yes	X	No	
-/		sserved (e.g. variation					
3)	Other major activities c	ompleted					
4)	Supplies needed						
	-						
5)	Visitors						
ted off-site, on mperature insome belt in boostas.	oil/filter/gasket and/or an side shed too cold upon arri ster pump. Soaked up sma collected as the membrane	y other abnormal of val. Adjusted temps all amount of oil and v	perating conditions: setting on heat inside she water from separator for	ed. Repair disposal.	Wiped dov		
	* Unld 2) Oil Le 3) Oil ad 4) Oil ch 5) Oil fili 6) Air fili 7) Oil sep 8) Termi 2 Generator 1) Prefilt 2) Coales 1) 2) 3) 4) 5) outine activ ted off-site, mperature ins n belt in book as. Meter # 96-93	1) Oil Level Checked with system u * Unload system, wait until Deliv 2) Oil Level with system unloaded Low (red) 3) Oil added 4) Oil changed 5) Oil filter changed 6) Air filter Changed 7) Oil separator changed 8) Terminal strips checked 2 Generator 1) Prefilter changed 2) Coalescing changed 1) Performed general hous 2) Abnormal conditions of 3) Other major activities c 4) Supplies needed 5) Visitors outine activities such as any alarm/sheted off-site, oil/filter/gasket and/or an in belt in booster pump. Soaked up smalas. Ings were not collected as the membrane of the first policy of the first pol	1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is le 2) Oil Level with system unloaded Low (red) 3) Oil added 4) Oil changed 5) Oil filter changed 6) Air filter Changed 7) Oil separator changed 8) Terminal strips checked 7) Oil separator changed 8) Terminal strips checked 7) Prefilter changed 2) Coalescing changed 1) Performed general housekeeping (i.e. sweep 2) Abnormal conditions observed (e.g. vandali 3) Other major activities completed 4) Supplies needed 5) Visitors outine activities such as any alarm/shutdowns, sampling ted off-site, oil/filter/gasket and/or any other abnormal of the presence of the properties of the pr	Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi 2) Oil Level with system unloaded	1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi 2) Oil Level with system unloaded Low (red) Normal (green) 3) Oil added 4) Oil changed 5) Oil filter changed 6) Air filter changed 7) Oil separator changed 8) Terminal strips checked 1) Prefilter changed 2) Coalescing changed Yes No 2) Coalescing changed Yes No Terminal strips checked No Terminal strips checked Termina	Compressor 1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi 2) Oil Level with system unloaded Low (red) Normal (green) X 3) Oil added Yes No X 4) Oil changed Yes No X 5) Oil filter changed Yes No X 7) Oil separator changed Yes No X 8) Terminal strips checked Yes No X Concerator 1) Prefilter changed Yes No X X X Concerator 1) Prefilter changed Yes No X X X Concerator 1) Prefilter changed Yes No X X X Concerator In the thin booten pungulation of the conceration of the concern of	Compressor 1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi 2) Oil Level with system unloaded Low (red) Normal (green) Normal (green) No X High (orange) 4) Oil changed Yes No X 5) Oil filter changed Yes No X 7) Oil separator changed Yes No X 8) The Changed Yes No X 7) Oil separator changed Yes No X 8) The Changed Yes No X No X 10 Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No CENERAL SYSTEM NOTES 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No Other major activities completed 4) Supplies needed 5) Visitors outine activities such as any alarm/shutdowns, sampling, maintenance, material ted off-site, oil/filter/gasket and/or any other abnormal operating conditions: more activities such as any alarm/shutdowns, sampling, maintenance material ted off-site, oil/filter/gasket and/or any other abnormal operating conditions: more activities such as any alarm/shutdowns, and operating conditions: more activities such as any alarm/shutdowns of oil and water from separator for disposal. Wiped down all equipment and cleaned up all given the providing faulty results. Meter # 96-934-323 tied into Pole #4

SYSTEM #1

Date: Time: Weather: Outdoor Temper Inside Trailer Temp Performed B	erature:	13 Su ~3' ~6	/2013 :21 nny 9° F 2° F	- - - -							
r enormed b				-							
	O ₂ Ge	enerator (A	irSep)			(Compressor	(Kaesar Rotai	y Screv	v)	
Hours			5,456.9	-	Compressor T	Tank *			115		(psi)
Feed Air Pressure *			110	(psi)		(reac	lings below	are made from	•	anel)	
Cycle Pressure *			65	(psi)	Delivery Air Element Outle	et Temperatu	ıre		113		(psi) (oF)
Oxygen Receiver Pressu	re *			100 (psi)	Running Hou Loading Hou				6,362 4,003		(hours)
Oxygen Purity * maximum reading during loa	iding cycle		95.4	(percent)	* maximum read	ing during load	ing cycle				
	njection Bank 1			O ₂ Injec	Injection Bank 2				Inicati	ion Bank 3	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-1	95.5	30	29	OW-1-5S	67.3	35	17	OW-1-9D	00.5		27
									88.5	20	
OW-1-2	96.5	30	29	OW-1-6S	67.0	45	17	OW-1-10D	87.2	15	27
OW-1-2	96.5 96.3	30	29	OW-1-6S OW-1-7S	67.0		17				27
						45		OW-1-10D	87.2	15	
OW-1-3	96.3	30	30	OW-1-7S	66.9	45	18	OW-1-10D	87.2 86.1	15	29
OW-1-3	96.3	30	30	OW-1-7S	66.9	40 40	18	OW-1-10D OW-1-11D OW-1-12D	87.2 86.1 85.3	15 30 30	29
OW-1-3 OW-1-4 OW-1-5D	96.3 95.0 93.9	30 30 40	30 30 30	OW-1-7S OW-1-8S OW-1-9S	66.9 66.7 66.0	40 40 30	18 17 18	OW-1-10D OW-1-11D OW-1-12D OW-1-13D	87.2 86.1 85.3 84.7	30 30 30	29 29 28
OW-1-3 OW-1-4 OW-1-5D OW-1-6D	96.3 95.0 93.9 92.4	30 30 40 30	30 30 30 29	OW-1-7S OW-1-8S OW-1-9S OW-1-10S	66.9 66.7 66.0 54.6	45 40 40 30 30	18 17 18	OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	87.2 86.1 85.3 84.7	30 30 30 30 35	29 29 28 29

SYSTEM #1

ID				O ₂ Injection	on System #1						
ID	Injection Bank 4			2 0	Injection Bank 5				Injecti	ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	30	13	OW-1-17D	79.5	40	14	OW-1-21S	49.3	30	11
OW-1-14S	52.7	30	14	OW-1-18D	78.3	30	27	OW-1-22S	49.3	30	11
OW-1-15S	52.2	30	13	OW-1-19D	78.9	30	27	OW-1-23S	48.8	30	12
OW-1-16SR	51.8	30	23	OW-1-20D	79.5	50	27	OW-1-24S	48.4	45	12
OW-1-17S	50.7	30	22	OW-1-21D	79.5	40	26	OW-1-25S	48.8	45	13
OW-1-18S	50.2	30	13	OW-1-22D	79.5	40	25	OW-1-26SR	48.3	45	13
OW-1-19S	49.7	30	15	OW-1-23D	78.7	30	25	OW-1-27S	48.3	30	13
OW-1-20S	49.3	30	13	OW-1-24D	78.2	30	26	OW-1-28S	48.3	20	13
	on point flows we on after collecting			Bank #5 were set at 3 minutes.				and provided in the			
Corporation		g readings. Inje		Bank #5 were set at 3 minutes.	on System #1 Injection Bank 8			area provided in in		ion Bank 9	
Corporation	on after collecting	g readings. Inje		Bank #5 were set at 3 minutes.	on System #1	scfh	psi	ID			psi
ments: Corporation	on after collecting Injection Bank 7	g readings. Inje	ection times at E	Bank #5 were set at 3 minutes. O ₂ Injection	on System #1 Injection Bank 8				Injecti	ion Bank 9	psi
ID Corporation	Injection Bank 7	g readings. Inje	psi	Bank #5 were set at 3 minutes. O2 Injection	on System #1 Injection Bank 8 Depth	scfh	psi	ID	Injecti Depth	ion Bank 9	
ID OW-1-25D	Injection Bank 7 Depth 78.1	g readings. Inje	psi 28	O ₂ Injection OW-1-29S	on System #1 Injection Bank 8 Depth 48.5	scfh 30	psi 12	ID OW-1-33D	Injecti Depth 83.2	scfh 20	28 31
ID OW-1-25D OW-1-26D	Injection Bank 7 Depth 78.1	g readings. Inje	psi 28	O ₂ Injection O ₂ Injection ID OW-1-29S OW-1-30S	Injection Bank 8 Depth 48.5	scfh 30 30	psi 12 13	ID OW-1-33D OW-1-34D	Injecti Depth 83.2 84.5	ion Bank 9 sefh 20 20	28 31 28
ID OW-1-25D OW-1-26D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	g readings. Inje 7 scfh 20 20 10		O ₂ Injection O ₂ Injection ID OW-1-29S OW-1-30S OW-1-31S	Depth 48.5 48.8 49.3	scfh 30 30 30	psi 12 13 13	ID OW-1-33D OW-1-34D OW-1-35D	Injecti Depth 83.2 84.5 85.0	sefh 20 20 20	28 31 28 29
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D	Name	20 20 10 15	psi 28 27 27	O ₂ Injection O ₂ Injection ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S	Injection Bank 8 Depth 48.5 48.8 49.3 49.3	30 30 30 30	12 13 13 12	OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injecti Depth	20 20 30	28 31 28 29 28
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Bank 7	20 20 10 15 30	28 28 27 27 27	O ₂ Injection O ₂ Injection ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	Injection Bank 8 Depth 48.5 48.8 49.3 49.7	30 30 30 30 30 25	12 13 13 12 12	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D		20 20 20 30 30	

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

	O ₂ Injection System #1												
Ir	ijection Bank 1	0		I	njection Bank 11				Injecti	on Bank 12			
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi		
OW-1-37S	50.5	30	12	OW-1-41D	73.6	30	23	OW-1-43	67.4	30	19		
OW-1-38S	50.6	30	12	OW-1-42D	71.0	40	24	OW-1-44	66.6	30	18		
OW-1-39S	50.7	30	12	OW-1-45	65.7	45	19	OW-1-51R	60.6	30	16		
OW-1-40S	51.1	30	13	OW-1-46	64.3	55	18	OW-1-52	59.3	30	16		
OW-1-41S	51.5	25	13	OW-1-47	63.4	30	18	OW-1-53	60.0	30	16		
OW-1-42S	51.3	30	13	OW-1-48	62.5	60	18	OW-1-54	60.0	30	17		
				OW-1-49	61.5	30	17						
				OW-1-50	61.0	30	17						

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

					0	2 Injectio	n System #1					
	Mor	nitoring Points	Log			Mo	nitoring Points I	лоg		Monitor	ing Points Log	
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top
MP-1-1D	26.52	22.3	13.41	0	MP-1-5	26.18	20.9	24.53	0	MP-1-1D	12.76	11.82
MP-1-1S	26.69	40.0	16.98	0.2	MP-1-6	18.57	20.9	10.76	0	MP-1-2D	45.44	40.91
MP-1-2D	20.57	35.4	47.37	0	MP-1-7	21.83	20.9	23.14	0	MP-1-3D	22.51	19.31
MP-1-2S	21.05	38.3	28.50	0.6	MP-1-8	22.90	20.9	10.12	0	MP-1-4D	27.52	21.00
MP-1-3D	18.79	20.9	25.04	0								
MP-1-3S	18.77	23.7	25.47	0								
MP-1-4D	21.52	20.9	29.60	0								

Comments:

MP-1-4S

21.34

23.14

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

								Date:	2/22/2013
			C	OPERATIONAL 1	NOTES				
GA5 Air Compressor				JI ERRITIONAL I	TOTES				
1) Oil Leve * Unloa	el Checked with system und system, wait until Deliv		e is less tha	nn 9 psi	Yes	X	No		
2) Oil Leve	el with system unloaded Low (red)	X		Normal (green)			High (a	orange)	
3) Oil adde	, ,	Yes	X		No		Tilgii (C	nunge)	•
4) Oil char	nged	Yes		_	No	X			
5) Oil filte	· ·	Yes			No	X			
6) Air filte	0	Yes		<u>—</u>	No	X			
	arator changed al strips checked	Yes	X	<u> </u>	No	X			
8) Termina	ai strips checked	i es	Λ		NO				
AS-80 O ₂ Generator									
 Prefilter 	0	Yes		<u> </u>	No	X			
2) Coalesc	ing changed	Yes		_	No	X			
			GE	NERAL SYSTEM	A NOTES				
<u>Trailer</u> 1)	Performed general hous	ekeeping (i.e. sv	weep, colle	ect trash inside and		X		No	
2)	Abnormal conditions ob	served (e.g. van	idalism)						
3)	Other major activities co	ompleted							
4)	Supplies needed	_							
5)	Visitors								
transported off-site, of Found temperature inside	ies such as any alarm/sh il/filter/gasket and/or and de shed too cold upon arri water from separator for	y other abnorm val. Sealed up v	nal operat vents to try	ing conditions: and raise tempera	ture inside			-	compressor. Soaked up
Found high pressure un	der monitoring point MP-	1-2D.							
DO Meter membrane tij 100% isobutylene and r	• •	was calibrated to	o 100% ox	sygen saturations.	PID was sp	pan calibrat	ted with fresh air a	nd was reading	0.0 ppm. Calibrated with
Electric Meter # 96-934	I-323 tied into Pole #4								
Action Items:									

SYSTEM #1

Date: Time: Weather:		12	2013 :41 low	<u>-</u> -								
Outdoor Tempera	ature:		9° F	-								
Inside Trailer Temp			5° F	=								
Performed By	y:	Mike	Ryan	-								
	O ₂ Ge	enerator (A	irSep)		Compressor (Kaesar Rotary Screw)							
Hours			5,606.9	-	Compressor T	(psi)						
Feed Air Pressure *	ed Air Pressure *(psi)						dings below	are made from	•	oanel)		
Cycle Pressure *	rcle Pressure * (psi)						ure		113		(psi) (oF)	
Oxygen Receiver Pressu	Running Hou Loading Hou				6,528		(hours)					
	(psi) Loading Hours								·			
Oxygen Purity * maximum reading during loa	ading cycle		86.6	(percent)	* maximum read	ing during load	ling cycle					
				O ₂ Injec	tion System #1							
	Injection Bank 2 Injection Bank 3											
	njection Bank						1					
ID ID	njection Bank Depth	1 scfh	psi	ID	Injection Bank 2 Depth	scfh	psi	ID	Injecti Depth	ion Bank 3	psi	
			psi 30	ID OW-1-5S		scfh 20	psi 18	ID OW-1-9D			psi 28	
ID	Depth	scfh			Depth				Depth	scfh		
ID OW-1-1	Depth 95.5	scfh 30	30	OW-1-5S	Depth 67.3	20	18	OW-1-9D	Depth 88.5	sefh 60	28	
OW-1-1 OW-1-2	95.5 96.5	30 40	30	OW-1-5S OW-1-6S	67.3 67.0	20	18	OW-1-9D	88.5 87.2	60 70	28	
OW-1-1 OW-1-2 OW-1-3	95.5 96.5 96.3	30 40 30	30 31 31	OW-1-5S OW-1-6S OW-1-7S	67.3 67.0 66.9	20 10 10	18 18 17	OW-1-9D OW-1-10D OW-1-11D	Depth 88.5 87.2 86.1	sefh 60 70 30	28 27 30	
OW-1-1 OW-1-2 OW-1-3 OW-1-4	95.5 96.5 96.3	30 40 30 30	30 31 31 30	OW-1-5S OW-1-6S OW-1-7S OW-1-8S	67.3 67.0 66.9	20 10 10	18 18 17 17	OW-1-9D OW-1-10D OW-1-11D OW-1-12D	88.5 87.2 86.1 85.3	scfh 60 70 30 30	28 27 30 29	
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D	95.5 96.5 96.3 95.0	30 40 30 30 30	30 31 31 30 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S	67.3 67.0 66.9 66.7	20 10 10 15 30	18 18 17 17 18	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D	Depth	scfh 60 70 30 30 30	28 27 30 29 29	
OW-1-1 OW-1-2 OW-1-3 OW-1-4 OW-1-5D OW-1-6D	95.5 96.5 96.3 95.0 93.9	30 40 30 30 30 30 35	30 31 31 30 29 29	OW-1-5S OW-1-6S OW-1-7S OW-1-8S OW-1-9S OW-1-10S	67.3 67.0 66.9 66.7 66.0	20 10 10 15 30 30	18 18 17 17 18 13	OW-1-9D OW-1-10D OW-1-11D OW-1-12D OW-1-13D OW-1-14D	Depth	scft 60 70 30 30 40	28 27 30 29 29 29	

SYSTEM #1

				O ₂ Injecti	on System #1						
	Injection Bank	4			Injection Bank 5				Injecti	ion Bank 6	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-13S	53.1	30	14	OW-1-17D	79.5	30	14	OW-1-21S	49.3	30	11
OW-1-14S	52.7	30	15	OW-1-18D	78.3	30	27	OW-1-22S	49.3	35	11
OW-1-15S	52.2	30	13	OW-1-19D	78.9	40	27	OW-1-23S	48.8	25	11
OW-1-16SR	51.8	35	26	OW-1-20D	79.5	40	28	OW-1-24S	48.4	20	12
OW-1-17S	50.7	30	23	OW-1-21D	79.5	30	27	OW-1-25S	48.8	30	13
OW-1-18S	50.2	40	13	OW-1-22D	79.5	30	27	OW-1-26SR	48.3	30	13
OW-1-19S	49.7	30	15	OW-1-23D	78.7	30	27	OW-1-27S	48.3	30	13
		20	12	OW-1-24D	78.2	30	27	OW-1-28S	48.3	30	13
				rate of ~30 scfh provided that Bank #5 were set at 3 minutes.	the pressure readin	g was no greate	er than the press				red by UR
ments: All injec Corporat	tion point flows weition after collecting	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	on System #1 Injection Bank 8			sures provided in th	Injecti	ion Bank 9	
All injec	tion point flows w	ere adjusted to g readings. Inje	the target flow i	rate of ~30 scfh provided that Bank #5 were set at 3 minutes.	the pressure readin		psi		e hydrosta	atic tables prepa	
ments: All injec Corporat	tion point flows weition after collecting	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	on System #1 Injection Bank 8			sures provided in th	Injecti	ion Bank 9	ps
ments: All injec Corporat	tion point flows we ion after collecting Injection Bank 7	ere adjusted to g readings. Inje	the target flow rection times at E	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti	on System #1 Injection Bank 8 Depth	scfh	psi	sures provided in the	Injecti	ion Bank 9	ps :
Ments: All inject Corporate TD OW-1-25D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inje	the target flow a cetion times at E psi	rate of ~30 scfh provided that Bank #5 were set at 3 minutes. O ₂ Injecti ID OW-1-29S	on System #1 Injection Bank 8 Depth 48.5	scfh 30	psi	ID OW-1-33D	Injecti Depth 83.2	ion Bank 9 scfh 40	29 31
Ments: All injec Corporate ID OW-1-25D OW-1-26D	Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inje	the target flow is exciton times at E psi 27 28	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti ID OW-1-29S OW-1-30S	on System #1 Injection Bank 8 Depth 48.5	scfh 30 30	psi 13 13	ID OW-1-33D OW-1-34D	Injecti Depth 83.2 84.5	ion Bank 9 scfh 40	29 31 29
ID OW-1-25D OW-1-27D	Injection Bank 7 Depth 78.1 77.9	re adjusted to g readings. Inje readings. Inj	the target flow is exciton times at E psi 27 28 28	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O ₂ Injecti ID OW-1-29S OW-1-30S OW-1-31S	on System #1 Injection Bank 8 Depth 48.5 48.8	scfh 30 30 30	psi 13 13	ID OW-1-33D OW-1-35D	Injecti Depth 83.2 84.5	ion Bank 9 scfh 40 30	93 31 29 29
ID OW-1-25D OW-1-27D OW-1-28D	Injection Bank	ere adjusted to g readings. Inje 7 scfh 25 45 40 40	the target flow rection times at E psi 27 28 28 27	ID OW-1-30S OW-1-31S OW-1-32S	on System #1 Injection Bank 8 Depth 48.5 48.8 49.3	30 30 30 30	psi 13 13 13 13	ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injecti Depth 83.2 84.5 85.0	ion Bank 9 scfh 40 30 50	29 31 29 29 28
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	Injection Bank	ere adjusted to g readings. Inje 7 scfh 25 45 40 40	psi 27 28 28 27 27	TID OW-1-30S OW-1-31S OW-1-33S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3	sefh 30 30 30 30 30	13 13 13 13 13	ID OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D	Injecti Depth 83.2 84.5 85.0 84.0	soft 40 30 50 65 30	psi 29 29 28 30 27
ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	Tinjection Bank	ere adjusted to g readings. Inje 7 Scfh 25 45 40 40 40	27 28 27 27 27 37	Ow-1-31S OW-1-32S OW-1-34S	the pressure readin on System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7 50.1	scfh 30 30 30 30 30 30	psi 13 13 13 13 13 12	OW-1-33D OW-1-35D OW-1-36D OW-1-37D OW-1-38D	Injecti Depth 83.2 84.5 85.0 84.0 82.0	scft 40 30 50 65 30	29 31 29 29 28 30

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

	O ₂ Injection System #1													
Iı	njection Bank 1	0		I	njection Bank 11				Injecti	on Bank 12				
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi			
OW-1-37S	50.5	30	12	OW-1-41D	73.6	25	22	OW-1-43	67.4	30	20			
OW-1-38S	50.6	30	13	OW-1-42D	71.0	25	21	OW-1-44	66.6	35	18			
OW-1-39S	50.7	40	13	OW-1-45	65.7	30	19	OW-1-51R	60.6	35	17			
OW-1-40S	51.1	30	13	OW-1-46	64.3	30	18	OW-1-52	59.3	35	15			
OW-1-41S	51.5	40	14	OW-1-47	63.4	30	17	OW-1-53	60.0	40	16			
OW-1-42S	51.3	40	13	OW-1-48	62.5	30	17	OW-1-54	60.0	30	15			
				OW-1-49	61.5	30	17							
				OW-1-50	61.0	30	17							

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

	O ₂ Injection System #1													
	Mor	itoring Points	Log			Mo	nitoring Points I	лоg		Monitori	ing Points Log			
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top		
MP-1-1D	26.33	23.8	42.41	0.1	MP-1-5	25.98	20.9	30.61	0	MP-1-1D	21.12	19.18		
MP-1-1S	26.49	40.1	22.87	0	MP-1-6	18.40	20.9	8.89	0	MP-1-2D	33.41	30.01		
MP-1-2D	20.40	35.9	46.77	0	MP-1-7	21.65	20.9	25.29	0	MP-1-3D	31.35	29.18		
MP-1-2S	20.94	37.5	29.95	0.4	MP-1-8	22.77	20.9	17.93	0	MP-1-4D	23.37	20.11		
MP-1-3D	18.61	21.1	35.21	0										
MP-1-3S	18.57	22.5	28.68	0.2										
MP-1-4D	21.33	22.9	32.79	0										
MP-1-4S	21.15	22.7	29.60	0										

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

								Date:	3/8/2013
			OPI	ERATIONAL I	NOTES				
GA5 Air Compressor			011		TOTES				
1) Oil Leve * Unload	l Checked with system unle I system, wait until Deliver I with system unloaded		s less than 9) psi	Yes	X	No		
2) Oli Leve	Low (red)	X]	Normal (green)			High (ora	nge)	
3) Oil adde		Yes	X		No				
4) Oil chan	_	Yes			No	X			
5) Oil filter 6) Air filter	0	Yes			No	X			
	rator changed	Yes			No	X			
	l strips checked	Yes	X		No				
AS-80 O ₂ Generator									
1) Prefilter	changed	Yes			No	X			
2) Coalesci	ng changed	Yes			No	X			
			GENE	ERAL SYSTEN	1 NOTES				
<u>Trailer</u> 1)	Performed general housek	eeping (i.e. swe	eep, collect t	trash inside and		X		No	
2)	Abnormal conditions obse	erved (e.g. vand	alism)						
3)	Other major activities con	npleted							
4)	Supplies needed								
5)	Visitors								
	es such as any alarm/shu /filter/gasket and/or any				1				
	cooling oil to compressor. e solenoid valves to clean a								
	to 100% oxygen saturation opm. Calibrated with 100p				lene prior	to calibratio	on and unit was read	ing 74.7 ppm.	Zeroed unit with fresh
Electric Meter # 96-934	323 tied into Pole #4								
Action Items:									

SYSTEM #1

Time: Weather: Outdoor Temper: Inside Trailer Temp Performed By	- - - - -											
	O ₂ Go	enerator (A	irSep)		Compressor (Kaesar Rotary Screw)							
Hours			5,733.3	-	Compressor T	Γank *			120		(psi)	
Feed Air Pressure * Cycle Pressure *							dings below are	are made from o	200 pt 20	panel)	(psi) (oF)	
Oxygen Receiver Pressu	re *			95 (psi)	Running Hou Loading Hou	rs			6,669 4,194		(hours)	
Oxygen Purity * maximum reading during loa	nding cycle		96.1	(percent)	* maximum read	ing during load	ing cycle					
I	njection Bank	1		O ₂ mjec	Injection Bank 2				Inject	ion Bank 3		
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi	
OW-1-1	95.5	30	30	OW-1-5S	67.3	30	18	OW-1-9D	88.5	40	28	
OW-1-2	96.5	30	32	OW-1-6S	67.0	30	19	OW-1-10D	87.2	20	27	
OW-1-2 OW-1-3	96.5 96.3	30	32	OW-1-6S OW-1-7S	67.0	30	19 17	OW-1-10D	87.2 86.1	20	27 30	
OW-1-3	96.3	40	31	OW-1-7S	66.9	30	17	OW-1-11D	86.1	15	30	
OW-1-3	96.3	40	31	OW-1-7S	66.9	30	17	OW-1-11D	86.1	15	30	
OW-1-3 OW-1-4 OW-1-5D	96.3 95.0 93.9	40 30 35	31 30 29	OW-1-7S OW-1-8S OW-1-9S	66.9 66.7 66.0	30 30 30	17 17 18	OW-1-11D OW-1-12D OW-1-13D	86.1 85.3 84.7	15 35 30	30 29 29	
OW-1-3 OW-1-4 OW-1-5D OW-1-6D	96.3 95.0 93.9 92.4	40 30 35 30	31 30 29 30	OW-1-7S OW-1-8S OW-1-9S OW-1-10S	66.9 66.7 66.0 54.6	30 30 30 30	17 17 18	OW-1-11D OW-1-12D OW-1-13D OW-1-14D	86.1 85.3 84.7 84.1	15 35 30 30	30 29 29 29	

SYSTEM #1

OW-1-13S 53.1 30 15 OW-1-17D 79.5 30 14 OW-1-21S 49.3 30 1 OW-1-14S 52.7 30 15 OW-1-18D 78.3 40 27 OW-1-22S 49.3 30 1 OW-1-15S 52.2 40 13 OW-1-19D 78.9 40 28 OW-1-23S 48.8 35 1 OW-1-16SR 51.8 50 26 OW-1-20D 79.5 45 28 OW-1-24S 48.4 30 1 OW-1-16SR 50.7 35 23 OW-1-21D 79.5 53 27 OW-1-25S 48.8 30 1 OW-1-18S 50.2 30 14 OW-1-22D 79.5 40 27 OW-1-26SR 48.3 35 1 OW-1-19S 49.7 30 15 OW-1-23D 78.7 40 27 OW-1-25S 48.3 35 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-22S 48.3 35 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 35 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 35 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 30 1 OW-1-20D 78.1 15 0W-1-20D 78.4 85 were set at 3 minutes. **OUT-1-20D **OUT-1-					O ₂ Inject	ion System #1						
OW-1-18S 53.1 30 15 OW-1-17D 79.5 30 14 OW-1-21S 49.3 30 1		Injection Bank									ion Bank 6	
OW-1-14S 52.7 30 15 OW-1-18D 78.3 40 27 OW-1-22S 49.3 30 1 OW-1-15S 52.2 40 13 OW-1-19D 78.9 40 28 OW-1-23S 48.8 35 1 OW-1-16SR 51.8 50 26 OW-1-20D 79.5 45 28 OW-1-24S 48.4 50 1 OW-1-17S 50.7 35 23 OW-1-21D 79.5 55 27 OW-1-25S 48.8 30 1 OW-1-18S 50.2 30 14 OW-1-22D 79.5 40 27 OW-1-25S 48.3 35 1 OW-1-19S 49.7 30 15 OW-1-23D 78.7 40 27 OW-1-27S 48.3 35 1 OW-1-20S 49.3 30 13 OW-1-23D 78.7 40 27 OW-1-27S 48.3 35 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 15 OW-1-24D 78.2 35 26 OW-1-28S 48.3 35 1 OW-1-20S 49.3 30 15 OW-1-23D 78.7 50 OW-1-28S 48.3 35 1 OW-1-20S 49.3 30 15 OW-1-24D 78.2 35 26 OW-1-28S 48.3 35 26 OW-1-25D 78.1 20 27 OW-1-25D 78.5 35 27 OW-1-25S 48.3 35 26 OW-1-25D 78.1 20 27 OW-1-29S 48.5 30 13 OW-1-34D 83.2 30 26 OW-1-25D 78.1 15 28 OW-1-30S 48.8 30 13 OW-1-34D 83.2 30 3 OW-1-26D 78.1 15 28 OW-1-31S 49.3 40 13 OW-1-34D 84.5 30 30 30 0W-1-28D 78.9 30 29 OW-1-31S 49.3 40 13 OW-1-35D 85.0 30 30 0W-1-28D 78.4 30 27 OW-1-32S 49.3 40 13 OW-1-35D 85.0 30 20 OW-1-28D 78.4 30 27 OW-1-33S 49.3 40 13 OW-1-35D 85.0 30 20 OW-1-28D 78.4 30 27 OW-1-33S 49.3 40 13 OW-1-35D 85.0 30 20 OW-1-28D 78.4 30 27 OW-1-33S 49.3 40 13 OW-1-35D 85.0 30 20 OW-1-28D 78.4 30 27 OW-1-33S 49.3 40 13 OW-1-35D 85.0 30 20 OW-1-28D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-35D 85.0 30 20 OW-1-28D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-35D 85.0 30 20 OW-1-38D 78.0 30 30 0W-1-38D 79.0 30 36 OW-1-33S 49.7 45 13 OW-1-35D 85.0 30 20 OW-1-38D 79.0 30 36 OW-1-33S 49.7 45 13 OW-1-35D 85.0 30 30 20 OW-1-38D 79.0 30 36 OW-1-33S 49.7 45 13 OW-1-35D 85.0 30 30 20 OW-1-38D 79.0 30 36 OW-1-33S 49.7 45 13 OW-1-35D 85.0 30 30 20 OW-1-38D 79.0 30 36 OW-1-33S 49.7 45 13 OW-1-35D 85.0 30 30 30 OW-1-34D 79.0 30 36 OW-1-33S 50 0W-1-33S 50 0W-1-33S 49.7 45 13 OW-1-35D 85.0 30 30 30 OW-1-34D 79.0 30 36 OW-1-33S 50 0W-1-33S 50 0W-1-33S 49.7 45 13 OW-1-35D 85.0 30 30 30 OW-1-34D 79.0 30 30 36 OW-1-33S 50 0W-1-33S 50 0W-1-33S 50 0W-1-33D 70 0	ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-1-15S	OW-1-13S	53.1	30	15	OW-1-17D	79.5	30	14	OW-1-21S	49.3	30	11
OW-1-16SR 51.8 50 26 OW-1-20D 79.5 45 28 OW-1-24S 48.4 30 1 OW-1-17S 50.7 35 23 OW-1-21D 79.5 55 27 OW-1-25S 48.8 30 1 OW-1-18S 50.2 30 14 OW-1-22D 79.5 40 27 OW-1-26SR 48.3 35 1 OW-1-19S 49.7 30 15 OW-1-23D 78.7 40 27 OW-1-27S 48.3 35 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-28S 48.3 40 1 OW-1-20S 78.1 15 28 OW-1-29S 48.5 30 13 OW-1-34D 83.2 30 2 OW-1-25D 78.1 15 28 OW-1-30S 48.8 30 13 OW-1-34D 84.5 30 3 OW-1-26D 78.1 15 28 OW-1-31S 49.3 40 13 OW-1-35D 85.0 30 3 OW-1-27D 77.9 30 29 OW-1-31S 49.3 40 13 OW-1-35D 85.0 30 2 OW-1-29D 78.4 30 27 OW-1-32S 49.3 40 13 OW-1-35D 85.0 30 2 OW-1-29D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-37D 84.0 30 2 OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-35D 82.0 35 3 OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-38D 82.0 35 3 OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	OW-1-14S	52.7	30	15	OW-1-18D	78.3	40	27	OW-1-22S	49.3	30	11
OW-1-17S 50.7 35 23 OW-1-21D 79.5 55 27 OW-1-25S 48.8 30 1 OW-1-18S 50.2 30 14 OW-1-22D 79.5 40 27 OW-1-26SR 48.3 35 1 OW-1-19S 49.7 30 15 OW-1-23D 78.7 40 27 OW-1-27S 48.3 35 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-24D 78.2 35 26 OW-1-28S 48.3 40 1 OW-1-20S 49.3 30 13 OW-1-28S 48.3 40 1 OW-1-20S 10.2 10.2 10.2 10.2 OW-1-20S 10.2 10.2 10.2 10.2 OW-1-25D 78.1 20 27 OW-1-29S 48.5 30 13 OW-1-33D 83.2 30 2 OW-1-25D 78.1 15 28 OW-1-30S 48.8 30 13 OW-1-34D 84.5 30 3 OW-1-27D 77.9 30 29 OW-1-31S 49.3 40 13 OW-1-34D 85.0 30 3 OW-1-28D 78.4 30 27 OW-1-32S 49.3 40 13 OW-1-35D 85.0 30 2 OW-1-29D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-37D 84.0 30 2 OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-38D 82.0 35 3 OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	OW-1-15S	52.2	40	13	OW-1-19D	78.9	40	28	OW-1-23S	48.8	35	12
OW-1-18S 50.2 30	OW-1-16SR	51.8	50	26	OW-1-20D	79.5	45	28	OW-1-24S	48.4	30	12
OW-1-19S	OW-1-17S	50.7	35	23	OW-1-21D	79.5	55	27	OW-1-25S	48.8	30	13
OW-1-208	OW-1-18S	50.2	30	14	OW-1-22D	79.5	40	27	OW-1-26SR	48.3	35	13
All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by UI Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes. Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes. Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes. Corporation after collecting readings. Injection Bank #5 Social Bank #5 Social Bank #5	OW-1-19S	49.7	30	15	OW-1-23D	78.7	40	27	OW-1-27S	48.3	35	13
Corporation after collecting readings. Injection times at Bank #5 were set at 3 minutes.												
OW-1-25D 78.1 20 27 OW-1-29S 48.5 30 13 OW-1-33D 83.2 30 2 OW-1-26D 78.1 15 28 OW-1-30S 48.8 30 13 OW-1-34D 84.5 30 3 OW-1-27D 77.9 30 29 OW-1-31S 49.3 40 13 OW-1-35D 85.0 30 3 OW-1-28D 78.0 35 27 OW-1-32S 49.3 40 13 OW-1-36D 85.0 30 2 OW-1-29D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-37D 84.0 30 2 OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-38D 82.0 35 3 OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	ments: All injecti Corporatio	on point flows won after collecting	ere adjusted to g readings. Inj	the target flow	rate of ~30 scfh provided that Bank #5 were set at 3 minutes	the pressure readin		er than the press	sures provided in the			red by UR
OW-1-26D 78.1 15 28 OW-1-30S 48.8 30 13 OW-1-34D 84.5 30 3 OW-1-27D 77.9 30 29 OW-1-31S 49.3 40 13 OW-1-35D 85.0 30 3 OW-1-28D 78.0 35 27 OW-1-32S 49.3 40 13 OW-1-36D 85.0 30 2 OW-1-29D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-37D 84.0 30 2 OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-38D 82.0 35 3 OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	ments: All injecti Corporatio	on point flows won after collecting	ere adjusted to g readings. Inj	the target flow rection times at F	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject	the pressure readin . ion System #1 Injection Bank 8				Injecti	ion Bank 9	
OW-1-27D 77.9 30 29 OW-1-31S 49.3 40 13 OW-1-35D 85.0 30 3 OW-1-28D 78.0 35 27 OW-1-32S 49.3 40 13 OW-1-36D 85.0 30 2 OW-1-29D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-37D 84.0 30 2 OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-38D 82.0 35 3 OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	ments: All injecti Corporatio	on point flows won after collecting	ere adjusted to g readings. Inj	the target flow rection times at F	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject	the pressure readin . ion System #1 Injection Bank 8				Injecti	ion Bank 9	
OW-1-28D 78.0 35 27 OW-1-32S 49.3 40 13 OW-1-36D 85.0 30 2 OW-1-29D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-37D 84.0 30 2 OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-38D 82.0 35 3 OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	ments: All injecti Corporation	on point flows won after collecting Injection Bank 7	ere adjusted to g readings. Inj	the target flow rection times at E	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O ₂ Inject ID	the pressure readin ion System #1 Injection Bank 8 Depth	scfh	psi	ID	Injecti Depth	ion Bank 9	psi
OW-1-29D 78.4 30 27 OW-1-33S 49.7 45 13 OW-1-37D 84.0 30 2 OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-38D 82.0 35 3 OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	ments: All injecti Corporation ID OW-1-25D	on point flows we on after collecting Injection Bank Depth 78.1	ere adjusted to g readings. Inj 7 sefh 20	the target flow at Ection times at E	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S	the pressure readin ion System #1 Injection Bank 8 Depth 48.5	scfh 30	psi 13	ID OW-1-33D	Injecti Depth	scfh 30	ps :
OW-1-30D 79.0 30 36 OW-1-34S 50.1 30 12 OW-1-38D 82.0 35 3 OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	ID OW-1-25D OW-1-26D	on point flows we on after collecting Injection Bank 7 Depth 78.1	ere adjusted to g readings. Inj 7 scfh 20 15	the target flow at Election times at Election ti	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S	the pressure readin ion System #1 Injection Bank 8 Depth 48.5	scfh 30 30	psi 13 13	ID OW-1-33D OW-1-34D		soft 30	29 32
OW-1-31D 80.5 30 25 OW-1-35S 50.3 35 13 OW-1-39D 78.0 40 2	ID OW-1-25D OW-1-26D OW-1-27D	on point flows we on after collecting Injection Bank 7 Depth 78.1 78.1 77.9	re adjusted to g readings. Inj readings. Inj readings. Inj readings. Inj readings. Inj readings. Inj readings. Inj	the target flow at Election times at Election ti	rate of ~30 scfh provided tha Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S	the pressure readin ion System #1 Injection Bank 8 Depth 48.5 48.8	scfh 30 30 40	psi 13 13	ID OW-1-33D OW-1-34D OW-1-35D	Inject Depth	30 30 30	29 32 30
	ID OW-1-25D OW-1-27D OW-1-28D	on point flows won after collecting Injection Bank 7 78.1 78.1 77.9 78.0	ere adjusted to g readings. Inj 7 sefh 20 15 30 35	the target flow ecction times at E psi 27 28 29 27	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S	the pressure readin ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3	30 30 40 40	13 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D	Injecti Depth	30 30 30 30	psi 29 32 29 28
OW-1-32D 81.6 30 30 OW-1-36S 50.3 30 13 OW-1-40D 76.0 45 2	ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D	on point flows we on after collecting Injection Bank 78.1 78.1 77.9 78.0 78.4	ere adjusted to g readings. Inj 7 sefh 20 15 30 35 30	the target flow ection times at E psi 27 28 29 27 27	rate of ~30 scfh provided that Bank #5 were set at 3 minutes O2 Inject ID OW-1-29S OW-1-30S OW-1-31S OW-1-32S OW-1-33S	the pressure readin ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7	30 30 40 40 45	13 13 13 13 13	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D		30 30 30 30 30	29 32 30 29
	ID OW-1-25D OW-1-26D OW-1-27D OW-1-28D OW-1-29D OW-1-30D	on point flows we on after collecting Injection Bank 7 78.1 78.1 77.9 78.0 78.4 79.0	ere adjusted to g readings. Inj 7 sefh 20 15 30 35 30 30	psi 27 28 29 27 27 27 36	Og Inject Og Inject ID OW-1-29S OW-1-31S OW-1-32S OW-1-33S OW-1-34S	the pressure readin ion System #1 Injection Bank 8 Depth 48.5 48.8 49.3 49.3 49.7 50.1	scfh 30 30 40 40 45 30	13 13 13 13 13 13 12	OW-1-33D OW-1-34D OW-1-35D OW-1-36D OW-1-37D OW-1-38D		30 30 30 30 35	29 32 30 29 28

SYSTEM #1

Hempstead Intersection Street Former MGP Site Nassau County, New York

O ₂ Injection System #1												
Ir	ijection Bank 1	0		I	njection Bank 11				Injecti	on Bank 12		
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi	
OW-1-37S	50.5	30	13	OW-1-41D	73.6	30	23	OW-1-43	67.4	40	21	
OW-1-38S	50.6	30	13	OW-1-42D	71.0	30	21	OW-1-44	66.6	30	19	
OW-1-39S	50.7	30	13	OW-1-45	65.7	25	19	OW-1-51R	60.6	30	17	
OW-1-40S	51.1	30	14	OW-1-46	64.3	25	18	OW-1-52	59.3	40	15	
OW-1-41S	51.5	40	14	OW-1-47	63.4	35	17	OW-1-53	60.0	30	17	
OW-1-42S	51.3	30	14	OW-1-48	62.5	30	17	OW-1-54	60.0	30	15	
				OW-1-49	61.5	30	17					
OW-1-50 61.0 30 16												

Comments:

All injection point flows were adjusted to the target flow rate of ~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables prepared by URS Corporation after collecting readings. Injection time at Bank #11 was set at 6 minutes.

O ₂ Injection System #1													
	Mor	nitoring Points	Log			Mo	nitoring Points I	лоg		Monitori	ng Points Log		
ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)	ID	DO (mg/L) Middle	DO (mg/L) Top	
MP-1-1D	26.11	23.7	49.45	0	MP-1-5	25.72	20.9	21.05	0	MP-1-1D	21.82	19.17	
MP-1-1S	26.24	39.7	24.78	0	MP-1-6	18.09	20.9	7.42	0	MP-1-2D	37.19	21.79	
MP-1-2D	20.01	25.4	42.12	0	MP-1-7	21.35	20.9	21.14	0	MP-1-3D	42.47	39.00	
MP-1-2S	20.53	40.0	30.31	0	MP-1-8	18.09	20.9	9.11	0	MP-1-4D	40.20	49.14	
MP-1-3D	18.32	24.5	56.27	0									
MP-1-3S	18.28	27.7	38.71	0									
MP-1-4D	21.03	24.7	27.82	0									
MP-1-4S	20.83	25.8	43.75	0									

Comments:

DO readings were collected at the following depths: MP-1-1S (66 feet), MP-1-1D (96 feet), MP-1-2S (46 feet), MP-1-2D (81 feet), MP-1-3S (49 feet), MP-1-3D (79 feet), MP-1-4S (53 feet), MP-1-4D (83 feet), MP-1-5 (78 feet), MP-1-6 (61 feet), MP-1-7 (64 feet) and MP-1-8 (58 feet).

SYSTEM #1

ODERATIONAL NOTES						Date:	3/21/2013
GAS Air 1 0.01 Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi 2) Oil Level with system unloaded Low (red) X Normal (green) High (orange) 3) Oil added Yes No X 4) Oil changed Yes No X 5) Oil filter changed Yes No X 6) Air filter Changed Yes No X 7) Oil separator changed Yes No X 8) Terminal strips checked Yes No X 8) Terminal strips checked Yes No X 8) Terminal strips checked Yes No X 9) Coalescing changed Yes No X 9) Coalescing changed Yes No X 9) Coalescing changed Yes No X 9) Oil filter changed Yes No X 9) Oil filter changed Yes No X 9) Terminal strips checked Yes X No X 9) Terminal strips checked Yes X No X 9) Terminal strips checked Yes X No X 9) Terminal strips checked Yes No X 9) Terminal strips checked Yes No X 9) One that the strip changed Yes No X 9) Abnormal conditions observed (e.g. vandalism) GENERAL SYSTEM NOTES Trailer 1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) Yes X No				OPERATIONAL	NOTES		
1) Oil Level Checked with system unloaded* * Unload system, with resure is less than 9 psi 2) Oil Level with system unloaded	GA5 Air Compressor			JI EKATIONAL	NOTES		
5) Oil filter changed Yes No X 6) Air filter Changed Yes No X 7) Oil separator changed Yes No X 8) Terminal strips checked Yes No X No No X No X No X No X No X No X N	1) Oil Le * Unlo	oad system, wait until Deli evel with system unloaded	ivery Air Pressure is less that		Yes X	No	
8) Terminal strips checked Yes X No AS-80 O, Generator 1) Prefiler changed Yes No X 2) Coalescing changed Yes No X Trailer 1) Performed general housekeeping (i.e., sweep, collect trash inside and out, etc.) Yes X No	4) Oil cha 5) Oil filt 6) Air filt	ded anged ter changed ter Changed	YesYes	_	No	High (orange)	_
1) Prefilter changed Yes No X NO X Coalescing changed Yes No X NO X No X X	8) Termin		Yes X	<u>-</u> -		- -	
1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) YesX No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed 5) Visitors Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oll/filter/gasket and/or any other abnormal operating conditions: On March 19, 2013, removed one flow meter from a not in use injection bank to replace broken flow meter in System #2. Took apart all solenoid valves in air sep unit and found mud & silt buildup which was causing the low oxygen reading. Cleaned the valves and flushed out all tubing prior to reinstalling valves. Restarted unit and left running. Added small amount of cooling oil to compressor and adjusted belt tension. Soaked up small amount of oil and water from separator for disposal. Took apart solenoid valve on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4	1) Prefilte		YesYes	_ 		-	
1) Performed general housekeeping (i.e. sweep, collect trash inside and out, etc.) YesX No 2) Abnormal conditions observed (e.g. vandalism) 3) Other major activities completed 4) Supplies needed 5) Visitors Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions: On March 19, 2013, removed one flow meter from a not in use injection bank to replace broken flow meter in System #2. Took apart all solenoid valves in air sep unit and found mud & silt buildup which was causing the low oxygen reading. Cleaned the valves and flushed out all tubing prior to reinstalling valves. Restarted unit and left running. Added small amount of cooling oil to compressor and adjusted belt tension. Soaked up small amount of oil and water from separator for disposal. Took apart solenoid valve on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4			GE	NERAL SYSTEM	M NOTES		
3) Other major activities completed 4) Supplies needed 5) Visitors Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions: On March 19, 2013, removed one flow meter from a not in use injection bank to replace broken flow meter in System #2. Took apart all solenoid valves in air sep unit and found mud & silt buildup which was causing the low oxygen reading. Cleaned the valves and flushed out all tubing prior to reinstalling valves. Restarted unit and left running. Added small amount of cooling oil to compressor and adjusted belt tension. Soaked up small amount of oil and water from separator for disposal. Took apart solenoid valve on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4		Performed general hou	sekeeping (i.e. sweep, colle	ect trash inside and		No	_
Accord routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions: On March 19, 2013, removed one flow meter from a not in use injection bank to replace broken flow meter in System #2. Took apart all solenoid valves in air sep unit and found mud & silt buildup which was causing the low oxygen reading. Cleaned the valves and flushed out all tubing prior to reinstalling valves. Restarted unit and left running. Added small amount of cooling oil to compressor and adjusted belt tension. Soaked up small amount of oil and water from separator for disposal. Took apart solenoid valve on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4	2)	Abnormal conditions of	bserved (e.g. vandalism)				
Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions: On March 19, 2013, removed one flow meter from a not in use injection bank to replace broken flow meter in System #2. Took apart all solenoid valves in air sep unit and found mud & silt buildup which was causing the low oxygen reading. Cleaned the valves and flushed out all tubing prior to reinstalling valves. Restarted unit and left running. Added small amount of cooling oil to compressor and adjusted belt tension. Soaked up small amount of oil and water from separator for disposal. Took apart solenoid valve on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4	3)	Other major activities	completed				
Record routine activities such as any alarm/shutdowns, sampling, maintenance, material transported off-site, oil/filter/gasket and/or any other abnormal operating conditions: On March 19, 2013, removed one flow meter from a not in use injection bank to replace broken flow meter in System #2. Took apart all solenoid valves in air sep unit and found mud & silt buildup which was causing the low oxygen reading. Cleaned the valves and flushed out all tubing prior to reinstalling valves. Restarted unit and left running. Added small amount of cooling oil to compressor and adjusted belt tension. Soaked up small amount of oil and water from separator for disposal. Took apart solenoid valve on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4	4)	Supplies needed					
transported off-site, oil/filter/gasket and/or any other abnormal operating conditions: On March 19, 2013, removed one flow meter from a not in use injection bank to replace broken flow meter in System #2. Took apart all solenoid valves in air sep unit and found mud & silt buildup which was causing the low oxygen reading. Cleaned the valves and flushed out all tubing prior to reinstalling valves. Restarted unit and left running. Added small amount of cooling oil to compressor and adjusted belt tension. Soaked up small amount of oil and water from separator for disposal. Took apart solenoid valve on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4	5)	Visitors					
found mud & silt buildup which was causing the low oxygen reading. Cleaned the valves and flushed out all tubing prior to reinstalling valves. Restarted unit and left running. Added small amount of cooling oil to compressor and adjusted belt tension. Soaked up small amount of oil and water from separator for disposal. Took apart solenoid valve on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4					ıl		
on injection bank #5 and adjusted spring tension as valve was not opening all the way. Wiped down all equipment and cleaned up all garbage from around fence areas. DO Meters membrane tip was replaced with a new unit and meter was calibrated to 100% oxygen saturation. PID was checked with 100 ppm isobutylene prior to calibration and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4							
and unit was reading 110.1 ppm. Zeroed unit with fresh air and was reading 0.0 ppm. Calibrated with 100 ppm isobutylene and reading was 100.4 ppm. Electric Meter # 96-934-323 tied into Pole #4			9				
						= =	
Action Items:	Electric Meter # 96-93	34-323 tied into Pole #4					
	Action Items:						

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	nte: me: tther: emperature: Temperature: ned By:	10 Su ~3 ~7	/2013 0:15 nnny 7° F 5° F e Ryan								
	O ₂ Gen	erator (Ai	rSep)				Com	<mark>pressor (Kaesa</mark>	r Rotary	Screw)	
Hours			16,560		Compressor Tank *110					(psi)	
Feed Air Press	ure *		70	(psi)			(readings	s below are mad	le from co	ntrol panel)	
G 1 B	ale.		60	<i>(</i> .)	Delivery Air				115		(psi)
Cycle Pressure	*		60	(psi)	Element Ou	tlet Tempei	rature		171		(°F)
Oxygen Receiv	er Pressure *			120	Running Ho				16,293		(hours)
				(psi)	Loading Ho	urs			16,287		(hours)
Oxygen Purity * maximum readin	g during loading cy	cle	95.9	(percent)		ading during lo					
	Injection Ba	mls A			O ₂ Injection Injection Ba		2		T _r	ijection Bank (ч
ID	Depth Depth	scfh	psi	ID	Depth Depth	scfh	psi	ID	Depth	scfh	sefh
OW-2-2	90.2'	50	31	OW-2-9S	75'	33	20	OW-2-10D	97.2'	28	27
OW-2-3	94.3'	82	12	OW-2-10S	75'	30	30	OW-2-11D	100.8'	10	31
OW-2-4	94.7'	34	33	OW-2-11S	76.5'	35	21	OW-2-12	94'	32	18
OW-2-5	95.3'	32	30	OW-2-13S	75'	37	19	OW-2-13D	97'	60	15
OW-2-6	95.7'	28	30	OW-2-15S	75'	41	12	OW-2-14	96.4'	46	21
OW-2-7	96'	47	29	OW-2-16S	-16S 75.5' 22 19 OW-2-15D 94.6' 60 38					38	
OW-2-8	96.3'	31	30	OW-2-18S	2-18S 74.5' 29 19 OW-2-16D 94.1' 62 20				20		
OW-2-9D	96.7'	34	29	OW-2-20S	-20S 79' 33 22 OW-2-17 95' 25 29				29		
Comments:	All injection point by URS Corporation			et flow rate of ~30	-30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables pre-						hydrostatic tables prepared

SYSTEM #2

	Date:											
					O ₂ Injection	System#	2					
	Injection Ba	nnk D			Injection Ba				I	njection Bank l	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	72	16	OW-2-22S	76'	39	10	OW-2-26D	95'	34	3	4
OW-2-19	96.1'	28	29	OW-2-24S	77.8'	51	20	OW-2-27	93.5'	34	2	8
OW-2-20D	96.6'	26	30	OW-2-26S	74'	42	13	OW-2-28D	92.1'	32	2	7
OW-2-21	96.6'	36	28	OW-2-28S	76'	33	21	OW-2-29	92.2'	36	2	8
OW-2-22D	96.3'	35	27	OW-2-30S	67.8'	27	16	OW-2-30D	88'	36	2	6
OW-2-23	97.2'	56	26	OW-2-34	71'	28	19	OW-2-31	86'	40	3	3
OW-2-24D	97'	34	29	OW-2-35	69.2'	26	21	OW-2-32	84'	20	3	8
OW-2-25	96'	51	22	OW-2-36	64.8'	30	15	OW-2-33	82'	26	3	4
	Injection Ba	nnk G			O ₂ Injection Injection Ba		2		Mor	nitoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	31	19	OW-2-45	61.1'	30	21	MP-2-1	NM	20.9	2.42	0
OW-2-38	62.1'	31	19	OW-2-46	61'	28	19	MP-2-2	NM	18.0	2.91	0
OW-2-39	60'	41	17	OW-2-47	60.5'	30	19	MP-2-3S	NM	18.5	3.08	0
OW-2-40	61.7'	34	20	ID	DO (mg/L) Middle	DO (n	0 /	MP-2-3D	NM	20.9	2.32	0
OW-2-41	61.7'	36	19	MP-2-2	2.61	2.5	53	MP-2-4	NM	20.3	3.02	0
OW-2-42	61.6'	34	19	MP-2-3S	3.17	3.1	11	MP-2-5	NM	20.2	3.20	0
OW-2-43	61.4'	33	20	MP-2-3D	2.86	3.1	19					
OW-2-44R	60.6'	36	19	MP-2-5	3.04	3.0	08					
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	at the pressur	re reading wa	as no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

					Date:	1/8/2013
			ODED ATIONAL NO	VDT-C		
GA5 Air Con	nneagar		OPERATIONAL NO	TES		
1	Oil Level Checked with sys * Unload system, wait until Oil Level with system unload	Delivery Air Pressur	re is less than 9 psi	Yes X	X No_	
		Low (red)	Normal (green)	X High (o		
	3) Oil added		Yes		No X	
	4) Oil changed5) Oil filter changed		Yes		No X No X	
	6) Air filter Changed		Yes Yes		No X	
	7) Oil separator cleaned		Yes		No X	
	B) Terminal strips checked		Yes		No X	
AS-80 O ₂ Ge	enerator					
_	Prefilter changed		Yes		No X	
	2) Coalescing changed		YesYes		No X	
				VOTEG		
			GENERAL SYSTEM N	NOTES		
<u>Trailer</u> 1	1) Performed general housekee	eping (i.e. sweep, col	lect trash inside and out, etc	2.)	No	
2	2) Abnormal conditions observ	ved (e.g. vandalism)				
3	3) Other major activities comp	pleted				
4	4) Supplies needed					
_	5) Visitors					
) VISIOIS					
	ine activities such as any ala off-site, oil/filter/gasket and/					
Wiped down	all equipment and cleaned up	all garbage from aro	und fence areas.			
The threads o	on the bolt holes of monitoring	g points MP-2-1, MP-	-2-3D and MP-2-3S manho	les can no longer be s	erviced and need t	to be replaced.
The fan moto	or in the air dryer unit was repl	laced on December 2	6, 2012 and is operating pro	operly.		
The solenoid	valve at the location that was	temporarily replaced	needs to be replaced with a	new solenoid valve.		
	g up all of the injections points viously mentioned and needs to		e j-plugs has been noted at 1	monitoring points MF	P-2-3S and MP-2-3	3D. This is a safety concern that
Electric Mete	er # 96-929-544 tied into Pole	#3				
Action Items	s:					

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	nte: me: tther: emperature: Temperature: ned By:	0 R ~3 ~7	/2013 :00 ain 6° F 0° F e Ryan								
	O ₂ Gen	erator (Ai	rSep)				Com	pressor (Kaesa	r Rotary	Screw)	
Hours			16,709		Compressor Tank *110					(psi)	
Feed Air Press	ure *		110	(psi)			(readings	s below are mad	le from co	ntrol panel)	
C I D	ψ.		65	()	Delivery Air				111		(psi)
Cycle Pressure	· **		65	(psi)	Element Ou	tiet Tempei	rature		127		(°F)
Oxygen Receiv	ver Pressure *			105	Running Ho				16,850		(hours)
				(psi)	Loading Ho	urs			16,437		(hours)
Oxygen Purity	g during loading cy	ala	92.9	(percent)	* movimum #00	ading during lo	andina avala				
· maximum readin	g during loading cy	cie			O ₂ Injection						
	Injection Ba	nk A			Injection Ba				In	ijection Bank (
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sefh
OW-2-2	90.2'	30	33	OW-2-9S	75'	25	20	OW-2-10D	97.2'	30	28
OW-2-3	94.3'	30	30	OW-2-10S	75'	30	30	OW-2-11D	100.8'	30	31
OW-2-4	94.7'	35	34	OW-2-11S	76.5'	30	21	OW-2-12	94'	30	20
OW-2-5	95.3'	50	30	OW-2-13S	75'	30	19	OW-2-13D	97'	35	31
OW-2-6	95.7'	35	30	OW-2-15S	75'	40	18	OW-2-14	96.4'	45	29
OW-2-7	96'	40	29	OW-2-16S	-16S 75.5' 45 19 OW-2-15D 94.6' 40 31					31	
OW-2-8	96.3'	55	29	OW-2-18S	2-18S 74.5' 45 19 OW-2-16D 94.1' 40 30				30		
OW-2-9D	96.7'	50	30	OW-2-20S	-20S 79' 40 22 OW-2-17 95' 50 29				29		
Comments:	All injection point by URS Corporation			et flow rate of ~30	~30 scfh provided that the pressure reading was no greater than the pressures provided in the hydrostatic tables pr						hydrostatic tables prepared

SYSTEM #2

Date:1/21/2013												
O ₂ Injection System #2												
	Injection Ba	ank D			Injection Ba	nk E			Iı	njection Bank l	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	30	30	OW-2-22S	76'	30	20	OW-2-26D	95'	30	3	4
OW-2-19	96.1'	40	30	OW-2-24S	77.8'	35	28	OW-2-27	93.5'	40	2	8
OW-2-20D	96.6'	30	31	OW-2-26S	74'	35	19	OW-2-28D	92.1'	60	2	7
OW-2-21	96.6'	30	29	OW-2-28S	76'	40	21	OW-2-29	92.2'	65	2	8
OW-2-22D	96.3'	30	27	OW-2-30S	67.8'	30	17	OW-2-30D	88'	50	2	7
OW-2-23	97.2'	40	30	OW-2-34	71'	35	19	OW-2-31	86'	40	3	2
OW-2-24D	97'	45	29	OW-2-35	69.2'	30	22	OW-2-32	84'	35	3	7
OW-2-25	96'	40	28	OW-2-36	64.8'	30	20	OW-2-33	82'	30	3	3
Comments:				et flow rate of ~30 jection banks D & I				s no greater than th	e pressures p	provided in the	hydrostatic tabl	es prepared
	Injection Ba	nk G			Injection Ba				Mon	itoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	21	MP-2-1	29.63	NM	12.18	0
OW-2-38	62.1'	30	19	OW-2-46	61'	30	19	MP-2-2	30.15	NM	15.05	0
OW-2-39	60'	35	18	OW-2-47	60.5'	35	19	MP-2-3S	30.82	NM	8.88	0
OW-2-40	61.7'	45	20	ID	DO (mg/L) Middle	DO (n To	_	MP-2-3D	31.01	NM	9.74	0.3
OW-2-41	61.7'	30	19	MP-2-2	9.48	8.3	30	MP-2-4	19.53	NM	11.10	0
OW-2-42	61.6'	40	20	MP-2-3S	9.04	8.1	1	MP-2-5	17.73	NM	8.12	0
OW-2-43	61.4'	40	20	MP-2-3D	9.11	8.8	39					
OW-2-44R	60.6'	30	20	MP-2-5	12.68	9.4	13					
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	nat the pressur	e reading wa	s no greater than th	e pressures j	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

		Date:	1/21/2013
	OPEDATIONAL NOTI		
0.5 1. 0	OPERATIONAL NOTE	LS	
GA5 Air Compressor 1) Oil Level Checked with system unloade * Unload system, wait until Delivery Ai 2) Oil Level with system unloaded	ir Pressure is less than 9 psi	Yes X No	
Low (red) 3) Oil added 4) Oil changed 5) Oil filter changed 6) Air filter Changed 7) Oil separator cleaned 8) Terminal strips checked	X Normal (green) Yes X Yes Yes Yes Yes Yes Yes X Yes Yes X Yes X	High (orange)	
AS-80 O ₂ Generator			
Prefilter changed Coalescing changed	Yes Yes	No X No X	
	GENERAL SYSTEM NO	TES	
Trailer 1) Performed general housekeeping (i.e. sv 2) Abnormal conditions observed (e.g. van	Yes X	No	
Other major activities completed			
4) Supplies needed			
5) Visitors			
Record routine activities such as any alarm/shutdow transported off-site, oil/filter/gasket and/or any other			
Found cooling oil in compressor low and added oil as n down all equipment and cleaned up all garbage from ar		leak at flow meter #17 and installed ne	w o-rings to fix leak. Wiped
The threads on the bolt holes of monitoring points MP-	-2-1, MP-2-3D and MP-2-3S manholes	can no longer be serviced and need to b	pe replaced.
The solenoid valve at the location that was temporarily	replaced needs to be replaced with a ne	w solenoid valve.	
Since starting up all of the injections points, high press has been previously mentioned and needs to be address	0.1	nitoring points MP-2-3S and MP-2-3D.	This is a safety concern that
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			

SYSTEM #2

Tii Wea Outdoor Te Inside Trailer	nte: me: tther: emperature: Temperature: ned By:	13 Su ~3 ~6	/2013 3:18 inny 1° F 5° F e Ryan	- - - -								
	O ₂ Gen	<mark>erator (Ai</mark>	rSep)				Com	pressor (Kaesa	<mark>r Rotary</mark>	Screw)		
Hours			16,935	-	Compressor	Tank *			85		(psi)	
Feed Air Press	ure *		90	(psi)			(readings	gs below are made from control panel)				
G 1 B	ale.		50	<i>(</i>)	Delivery Air				95		(psi)	
Cycle Pressure	*		50	(psi)	Element Ou	tlet Tempei	rature	(°F				
Oxygen Receiv	er Pressure *			110	Running Ho			17,084 (hot				
				(psi)	Loading Ho						(hours)	
Oxygen Purity * maximum readin	g during loading cy	cle	91.9	(percent)		iding during lo						
	Injection Ba	mls A			O ₂ Injection Injection Ba		2		T _v	ijection Bank (ч	
ID	Depth Depth	scfh	psi	ID	Depth Depth	scfh	psi	ID	Depth	scfh	sefh	
OW-2-2	90.2'	30	30	OW-2-9S	75'	30	20	OW-2-10D	97.2'	30	28	
OW-2-3	94.3'	30	28	OW-2-10S	75'	25	30	OW-2-11D	100.8'	45	32	
OW-2-4	94.7'	35	32	OW-2-11S	76.5'	30	21	OW-2-12	94'	40	20	
OW-2-5	95.3'	45	30	OW-2-13S	75'	30	19	OW-2-13D	97'	40	31	
OW-2-6	95.7'	30	30	OW-2-15S	75'	30	18	OW-2-14	96.4'	55	30	
OW-2-7	96'	50	29	OW-2-16S	75.5'	40	19	OW-2-15D	94.6'	65	31	
OW-2-8	96.3'	55	29	OW-2-18S	74.5'	40	19	OW-2-16D	94.1'	45	31	
OW-2-9D	96.7'	40	30	OW-2-20S	79'	50	22	OW-2-17	95'	40	30	
Comments:	All injection point by URS Corporation			get flow rate of ~30	scfh provided th	at the pressure	e reading wa	s no greater than th	e pressures p	provided in the	hydrostatic tables prepared	

SYSTEM #2

								Date:		2/7	/2013	
					O ₂ Injection	n System #2	2					
	Injection Ba	ank D			Injection Ba				I	njection Bank l	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	35	28	OW-2-22S	76'	40	20	OW-2-26D	95'	30	3	6
OW-2-19	96.1'	30	30	OW-2-24S	77.8'	30	28	OW-2-27	93.5'	35	2	7
OW-2-20D	96.6'	30	30	OW-2-26S	74'	30	20	OW-2-28D	92.1'	30	2	8
OW-2-21	96.6'	30	29	OW-2-28S	76'	35	21	OW-2-29	92.2'	30	2	8
OW-2-22D	96.3'	30	27	OW-2-30S	67.8'	40	17	OW-2-30D	88'	30	2	6
OW-2-23	97.2'	40	28	OW-2-34	71'	30	18	OW-2-31	86'	40	2	8
OW-2-24D	97'	30	29	OW-2-35	69.2'	40	20	OW-2-32	84'	40	3	7
OW-2-25	96'	45	28	OW-2-36	64.8'	45	19	OW-2-33	82'	30	3	1
Comments:				jection banks D & I				s no greater than th				
	Injection Ba	ank G			Injection Ba	nk H			Mor	itoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	20	20	OW-2-45	61.1'	30	21	MP-2-1	29.82	21.4	NM	0
OW-2-38	62.1'	30	19	OW-2-46	61'	30	19	MP-2-2	30.91	21.9	NM	0
OW-2-39	60'	30	18	OW-2-47	60.5'	30	19	MP-2-3S	31.01	22.4	NM	0
OW-2-40	61.7'	30	19	ID	DO (mg/L) Middle	DO (n		MP-2-3D	31.22	40.0	NM	0.5
OW-2-41	61.7'	15	19	MP-2-2	NM	NI	М	MP-2-4	19.68	23.9	NM	0
OW-2-42	61.6'	30	20	MP-2-3S	NM	NI	М	MP-2-5	17.85	21.3	NM	0
OW-2-43	61.4'	40	21	MP-2-3D	NM	NI	М					
OW-2-44R	60.6'	30	20	MP-2-5	NM	NI	М					
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	nat the pressur	e reading wa	s no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

		Date:	2/7/2013
	OPERATIONAL NO	TES	
GA5 Air Compressor			
 Oil Level Checked with system unloaded* 		Yes <u>X</u> No	
* Unload system, wait until Delivery Air Press	ure is less than 9 psi		
2) Oil Level with system unloaded	N -1 ()	V II' 1 /	
Low (red) 3) Oil added		X High (orange) No X	
4) Oil changed	Yes Yes	No X	
5) Oil filter changed	Yes	No X	
6) Air filter Changed	Yes Yes	No X	
7) Oil separator cleaned	Yes X	No X	
8) Terminal strips checked	Yes X	No	
AS-80 O ₂ Generator			
Prefilter changed	Yes	No X	
2) Coalescing changed	Yes	No X	
	GENERAL SYSTEM N	OTES	
Tueilen			
<u>Trailer</u> 1) Performed general housekeeping (i.e. sweep, co	ollect trash inside and out, etc.)	
1) Torrotmed general nousekeeping (no. 5 weep, ex	Yes X	No	
2) Abnormal conditions observed (e.g. vandalism	ı)		
Other major activities completed			
4) Supplies needed			
5) Visitors			
D	······································	.1	
Record routine activities such as any alarm/shutdowns, sau transported off-site, oil/filter/gasket and/or any other abno		al	
trumported on over, on meeting and a second of the second of	Anna opernong		
Repired drain hose that pulled out of separator unit. Soaked u	p small amount of oil and water	er from separator unit for disposal. Wip	oed down all equipment and
cleaned up all garbage from around fence areas.			
The threads on the bolt holes of monitoring points MP-2-1, M.	P-2-3D and MP-2-3S manhole	es can no longer be serviced and need to	be replaced.
The solenoid valve at the location that was temporarily replace	ed needs to be replaced with a	new solenoid valve.	
DO readings were not collected as the membrane tip on the DO	O probe was compromised pro	viding faulty readings.	
Electric Meter # 96-929-544 tied into Pole #3			
Action Items:			

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	nte: me: tther: emperature: Temperature: ned By:	13 Su ~3 ~6	/2013 3:21 unny 8° F 5° F e Ryan									
	O ₂ Gen	erator (Ai	rSep)				Com	pressor (Kaesa	r Rotary	Screw)		
Hours			17,108		Compressor	Tank *			80		(psi)	
Feed Air Press	ure *		80	(psi)			(readings	gs below are made from control panel)				
C I D	ψ.		65	()	Delivery Air				89		(psi)	
Cycle Pressure	*		65	(psi)	Element Ou	tlet Temper	ature	(°F				
Oxygen Receiv	er Pressure *			120	Running Ho		17,265 (ho					
				(psi)	Loading Hours 16,838 (ho						(hours)	
Oxygen Purity * maximum readin	g during loading cy	cle	91.9	(percent)		ading during lo						
	T : 4: D				O ₂ Injection		2			·	7	
ID	Injection Ba Depth	nk A scfh	psi	ID	Injection Ba Depth	scfh	psi	ID	Depth	jection Bank (scfh	scfh	
OW-2-2	90.2'	30	29	OW-2-9S	75'	35	20	OW-2-10D	97.2'	30	28	
OW-2-3	94.3'	30	23	OW-2-10S	75'	4.5						
OW 2 4						45	30	OW-2-11D 100.8' 30 31				
OW-2-4	94.7'	30	32	OW-2-11S	76.5'	50	22	OW-2-11D OW-2-12	94'	30	20	
OW-2-4	94.7' 95.3'	30	32	OW-2-11S OW-2-13S								
					76.5'	50	22	OW-2-12	94'	30	20	
OW-2-5	95.3'	30	30	OW-2-13S	76.5' 75'	50	22	OW-2-12 OW-2-13D	94'	30	20	
OW-2-5 OW-2-6	95.3' 95.7'	30	30	OW-2-13S	76.5' 75'	50 50 40	22 19	OW-2-12 OW-2-13D OW-2-14	94' 97' 96.4'	30 30 40	20 29 28	
OW-2-5 OW-2-6 OW-2-7	95.3' 95.7' 96'	30 35 35	30 30 29	OW-2-13S OW-2-15S OW-2-16S	76.5' 75' 75' 75.5'	50 50 40 30	22 19 18	OW-2-12 OW-2-13D OW-2-14 OW-2-15D	94' 97' 96.4' 94.6'	30 30 40 30	20 29 28 29	

SYSTEM #2

								Date:		2/21	1/2013	
					O ₂ Injection	n System #2	2					
	Injection Ba	ank D			Injection Ba	nk E			Iı	njection Bank l	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	30	30	OW-2-22S	76'	30	20	OW-2-26D	95'	30	3	2
OW-2-19	96.1'	40	30	OW-2-24S	77.8'	30	30	OW-2-27	93.5'	45	2	8
OW-2-20D	96.6'	30	31	OW-2-26S	74'	30	19	OW-2-28D	92.1'	45	2	7
OW-2-21	96.6'	40	29	OW-2-28S	76'	30	21	OW-2-29	92.2'	40	2	8
OW-2-22D	96.3'	35	28	OW-2-30S	67.8'	30	17	OW-2-30D	88'	45	2	7
OW-2-23	97.2'	35	30	OW-2-34	71'	40	19	OW-2-31	86'	30	3	1
OW-2-24D	97'	40	29	OW-2-35	69.2'	30	21	OW-2-32	84'	30	3	6
OW-2-25	96'	30	28	OW-2-36	64.8'	50	20	OW-2-33	82'	30	3	3
Comments:				et flow rate of ~30 jection banks D & I				s no greater than th	e pressures _l	provided in the	hydrostatic tabl	es prepared
	Injection Ba	ank G			Injection Ba	nk H			Mon	itoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	21	MP-2-1	29.65	20.9	17.42	0
OW-2-38	62.1'	30	19	OW-2-46	61'	35	19	MP-2-2	30.71	20.9	35.41	0
OW-2-39	60'	30	18	OW-2-47	60.5'	30	19	MP-2-3S	30.82	23.4	51.21	0.5
OW-2-40	61.7'	35	20	ID	DO (mg/L) Middle	DO (n To		MP-2-3D	31.01	40.0	47.37	0
OW-2-41	61.7'	40	19	MP-2-2	33.39	23.	12	MP-2-4	19.44	22.6	15.50	0
OW-2-42	61.6'	30	19	MP-2-3S	45.36	44.	14	MP-2-5	17.63	20.9	31.39	0
OW-2-43	61.4'	30	20	MP-2-3D	45.91	41.	14					
OW-2-44R	60.6'	30	20	MP-2-5	38.56	28.	21					
Comments:	All injection point by URS Corporation			et flow rate of ~30	scfh provided th	nat the pressur	e reading wa	s no greater than th	e pressures j	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

		Date: 2/21/2013
	ODED ATIONAL NO	OTTEG
017.11.0	OPERATIONAL NO	JTES
GA5 Air Compressor 1) Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air P.		Yes X No No
2) Oil Level with system unloaded	N 1/	** *** 1 /
Low (red) 3) Oil added	Normal (green) Yes	X High (orange) No X
4) Oil changed	Yes	No X
5) Oil filter changed	Yes	$\frac{NO}{NO} \frac{X}{X}$
6) Air filter Changed	Yes	No X
7) Oil separator cleaned	Yes X	No X
8) Terminal strips checked	Yes X	No
AS-80 O ₂ Generator		
1) Prefilter changed	Yes	No X
2) Coalescing changed	Yes Yes	No X No X
	GENERAL SYSTEM N	NOTES
	GENERAL SISIEM I	NOTES
Trailer 1) Performed general housekeeping (i.e. swee	ep, collect trash inside and out, etc Yes X	No
2) Abnormal conditions observed (e.g. vandal	lism)	
Other major activities completed		
4) Supplies needed		
5.77		
5) Visitors		
Record routine activities such as any alarm/shutdowns	s, sampling, maintenance, mater	rial
transported off-site, oil/filter/gasket and/or any other a		
1	w meter will need to be replaced v	d raise temperature. After taking readings and adjusting flow a leak with a new unit. Soaked up small amount of oil and water from separate areas.
The threads on the bolt holes of monitoring points MP-2-1	, MP-2-3D and MP-2-3S manhol	oles can no longer be serviced and need to be replaced.
The solenoid valve at the location that was temporarily rep	placed needs to be replaced with a	a new solenoid valve.
DO Meter membrane tip was replaced and meter was calib Calibrated with 100% isobutylene and reading was 99.8 pp	• •	n. PID was span calibrated with fresh air and was reading 0.0 ppm.
Electric Meter # 96-929-544 tied into Pole #3		
Action Items:		

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	ate: me: ather: emperature: Temperature: med By:	13 Si ~3 ~6	/2013 3:00 now 7° F 5° F e Ryan								
	O ₂ Gen	erator (Ai	rSep)				Com	pressor (Kaesa	r Rotary	Screw)	
Hours			17,269		Compressor	Tank *			110		(psi)
Feed Air Press	ure *		105	(psi)			(readings	s below are mad	e from co	ntrol panel)	
C1- D	4		65	(:)	Delivery Air				110		(psi) (°F)
Cycle Pressure	, *		65	(psi)	Element Ou	tiet Temper	ature	<u>127</u> (^c			
Oxygen Receiv	ver Pressure *			115	Running Ho			17,435 (ho			
				(psi)	Loading Ho	ours <u>17,000</u> (ho					(hours)
Oxygen Purity * maximum readin	g during loading cy	cle	95.1	(percent)	* maximum rea	iding during lo	oading cycle				
					O ₂ Injection	n System #2	2				
	Injection Ba					Injection Bank B Injection Bank C					
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	scfh
OW-2-2	90.2'	30	30	OW-2-9S	75'	30	20	OW-2-10D	97.2'	35	27
OW-2-3	94.3'	35	25	OW-2-10S	75'	30	30	OW-2-11D	100.8'	35	31
OW-2-4	94.7'										
		30	33	OW-2-11S	76.5'	30	21	OW-2-12	94'	45	20
OW-2-5	95.3'	30	33	OW-2-11S OW-2-13S	76.5' 75'	30	21	OW-2-12 OW-2-13D	94' 97'	45 30	20 30
OW-2-5 OW-2-6	95.3' 95.7'										
		30	30	OW-2-13S	75'	30	19	OW-2-13D	97'	30	30
OW-2-6	95.7'	30	30	OW-2-13S	75' 75'	30	19	OW-2-13D	97' 96.4'	30	30
OW-2-6 OW-2-7	95.7' 96'	30 30 40	30 30 29	OW-2-13S OW-2-15S OW-2-16S	75' 75' 75.5'	30 30 45	19	OW-2-13D OW-2-14 OW-2-15D	97' 96.4' 94.6'	30 30 Broken	30 28 29

SYSTEM #2

								Date:		3/7	/2013	
					O ₂ Injection	n System #2	2					
	Injection Ba	ank D			Injection Ba				I	njection Bank l	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	30	30	OW-2-22S	76'	30	20	OW-2-26D	95'	40	3	6
OW-2-19	96.1'	40	30	OW-2-24S	77.8'	30	29	OW-2-27	93.5'	40	2	8
OW-2-20D	96.6'	40	30	OW-2-26S	74'	30	19	OW-2-28D	92.1'	50	2	7
OW-2-21	96.6'	30	29	OW-2-28S	76'	30	21	OW-2-29	92.2'	50	2	8
OW-2-22D	96.3'	30	28	OW-2-30S	67.8'	35	18	OW-2-30D	88'	55	2	7
OW-2-23	97.2'	30	30	OW-2-34	71'	35	19	OW-2-31	86'	40	2	9
OW-2-24D	97'	35	29	OW-2-35	69.2'	30	21	OW-2-32	84'	30	3	7
OW-2-25	96'	30	28	OW-2-36	64.8'	30	20	OW-2-33	82'	30	3	4
Comments:				get flow rate of ~30 jection banks D & I				o no greater than the	o pressures j	provided in the	nyarostano ato	ол рторшос
	Injection Ba	ank G			Injection Ba	nk H			Mor	nitoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	30	20	MP-2-1	29.51	20.9	17.35	0
OW-2-38	62.1'	30	19	OW-2-46	61'	35	19	MP-2-2	30.60	20.9	41.71	0
OW-2-39	60'	40	19	OW-2-47	60.5'	30	19	MP-2-3S	30.68	20.9	54.30	0
OW-2-40	61.7'	30	20	ID	DO (mg/L) Middle	DO (n To		MP-2-3D	30.90	20.9	46.44	0
OW-2-41	61.7'	40	19	MP-2-2	40.11	25.	75	MP-2-4	19.34	20.9	11.68	0
OW-2-42	61.6'	30	19	MP-2-3S	52.44	47.	56	MP-2-5	17.53	20.9	21.02	0
OW-2-43	61.4'	30	20	MP-2-3D	40.11	37.	77					
OW-2-44R	60.6'	30	19	MP-2-5	19.83	21.	82					
Comments:	All injection point by URS Corporati			get flow rate of ~30	scfh provided th	nat the pressur	e reading wa	s no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared

SYSTEM #2

			Date:	3/7/2013
		OPERATIONAL NOTES		
GA5 Air Com	pressor	OI EMATIONAL TOTAL		
_	Oil Level Checked with system unloaded*		Yes X No	
	* Unload system, wait until Delivery Air Pressure	is less than 9 psi		
2)	Oil Level with system unloaded	-		
	Low (red)	Normal (green)	X High (orange)	
,	Oil added	Yes	No <u>X</u>	
	Oil changed	Yes	No X	
	Oil filter changed	Yes	No X	
	Air filter Changed	Yes	No X	
	Oil separator cleaned	Yes X	No X	
0)	Terminal strips checked	Yes X	No	
AS-80 O ₂ Gen				
	Prefilter changed	Yes	No X No X	
2)	Coalescing changed	Yes	No <u>X</u>	
		GENERAL SYSTEM NOTE	S	
Trailor				
Trailer 1)	Performed general housekeeping (i.e. sweep, colle	ect trash inside and out, etc.)		
ĺ	1	Yes X	No	
		<u></u>		
2)	Abnormal conditions observed (e.g. vandalism)			
3)	Other major activities completed			
4)	Supplies needed			
5)	Visitors			
Decord routin	ne activities such as any alarm/shutdowns, samp	ding maintanance material		
	ne acuvities such as any alarm/snutdowns, samp ff-site, oil/filter/gasket and/or any other abnorm			
	hose that blew out of separator. Secured hose with			
	Wiped down all equipment and cleaned up all garba	age from around fence areas. Ins	stalled new MGP locks on the doors of	f the shed as per request by
National Grid.				
The threads on	the bolt holes of monitoring points MP-2-1, MP-2	2-3D and MP-2-3S manholes can	no longer be serviced and need to be	replaced
			C	тершеса.
The solenoid v	valve at the location that was temporarily replaced r	needs to be replaced with a new s	solenoid valve.	
The flow mete	r at injection point 15D was found to be leaking du	aring the 2-21-13 and needs to be	e replaced with a new unit.	
	s calibrated to 100% oxygen saturation. PID was cland was reading 0.0 ppm. Calibrated with 100ppm	11		ling 74.7 ppm. Zeroed unit
Electric Meter	# 96-929-544 tied into Pole #3			
Action Items:				

SYSTEM #2

Tir Wea Outdoor To Inside Trailer	ate: me: ather: emperature: Temperature: ned By:	12 Su ~5 ~6	0/2013 0:37 unny 1° F 5° F e Ryan									
	O ₂ Gen	<mark>erator (Ai</mark>	rSep)				Com	pressor (Kaesa	r Rotary	Screw)		
Hours			17,415		Compressor	Tank *			95		(psi)	
Feed Air Press	ure *		90	(psi)			(readings	s below are made from control panel)				
G 1 B	ate.		60	<i>(</i>)	Delivery Air				92		(psi)	
Cycle Pressure	, *		60	(psi)	Element Ou	tlet Temper	rature	(°F				
Oxygen Receiv	ver Pressure *			120	Running Ho			17,589 (hou				
				(psi)	Loading Ho	oading Hours 17,147 (ho					(hours)	
Oxygen Purity * maximum readin	g during loading cy	cle	96.5	(percent)		ding during lo						
	* · · · · *				O ₂ Injection		2					
ID	Injection Ba Depth	scfh	psi	ID	Injection Ba Depth	scfh	psi	ID	Depth	jection Bank (scfh	scfh	
OW-2-2	90.2'	30	30	OW-2-9S	75'	30	20	OW-2-10D	97.2'	35	28	
OW-2-3	94.3'	30	29	OW-2-10S	75'	30	30	OW-2-11D	100.8'	45	32	
OW-2-4	94.7'								1			
	94.7	30	32	OW-2-11S	76.5'	30	21	OW-2-12	94'	40	20	
OW-2-5	95.3'	30 45	32	OW-2-11S	76.5' 75'	30 40	21	OW-2-12 OW-2-13D	94' 97'	40	20	
OW-2-5	95.3'	45	30	OW-2-13S	75'	40	19	OW-2-13D	97'	30	30	
OW-2-5 OW-2-6	95.3' 95.7'	45	30	OW-2-13S	75' 75'	40	19	OW-2-13D	97' 96.4'	30	30	
OW-2-5 OW-2-6 OW-2-7	95.3' 95.7' 96'	45 45 40	30 30 29	OW-2-13S OW-2-15S OW-2-16S	75' 75' 75.5'	40 30 30	19	OW-2-13D OW-2-14 OW-2-15D	97' 96.4' 94.6'	30 30 45	30 29 29	

SYSTEM #2

								Date:		3/20	0/2013	
					O ₂ Injection	1 System #	2					
	Injection Ba	ank D			Injection Ba				I	njection Bank l	F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	sc	fh
OW-2-18D	95.5'	40	31	OW-2-22S	76'	30	21	OW-2-26D	95'	30	3	6
OW-2-19	96.1'	30	30	OW-2-24S	77.8'	30	29	OW-2-27	93.5'	35	2	9
OW-2-20D	96.6'	30	30	OW-2-26S	74'	30	20	OW-2-28D	92.1'	35	2	7
OW-2-21	96.6'	20	29	OW-2-28S	76'	30	21	OW-2-29	92.2'	40	2	8
OW-2-22D	96.3'	25	28	OW-2-30S	67.8'	35	18	OW-2-30D	88'	40	2	7
OW-2-23	97.2'	30	30	OW-2-34	71'	30	18	OW-2-31	86'	30	2	9
OW-2-24D	97'	30	29	OW-2-35	69.2'	30	21	OW-2-32	84'	30	3	6
OW-2-25	96'	30	29	OW-2-36	64.8'	30	21	OW-2-33	82'	30	3	5
Comments:				get flow rate of ~30 jection banks D & I					F			F
	Injection Ba	ank G			Injection Ba	nk H			Mor	nitoring Points	Log	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	DTW	Oxygen Headspace (%O2)	DO (mg/L) Bottom	PID (ppm)
OW-2-37	62.8'	30	20	OW-2-45	61.1'	40	20	MP-2-1	29.28	20.9	22.67	0
OW-2-38	62.1'	35	19	OW-2-46	61'	30	19	MP-2-2	30.36	20.9	44.12	0
OW-2-39	60'	45	19	OW-2-47	60.5'	30	19	MP-2-3S	30.45	20.9	52.10	0
OW-2-40	61.7'	40	21	ID	DO (mg/L) Middle	DO (n		MP-2-3D	30.65	40.0	40.27	0
OW-2-41	61.7'	40	19	MP-2-2	NM	N	М	MP-2-4	19.06	22.9	19.55	0
OW-2-42	61.6'	30	19	MP-2-3S	50.19	44.	45	MP-2-5	17.24	24.6	27.47	0
OW-2-43	61.4'	30	20	MP-2-3D	35.05	34.	15					
OW-2-44R	60.6'	35	19	MP-2-5	21.55	29.	31					
Comments:	All injection point by URS Corporati			get flow rate of ~30	scfh provided th	at the pressur	e reading wa	s no greater than th	e pressures	provided in the	hydrostatic tabl	es prepared